{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Class 5: Data Transformations, Grouped Data, and Data Visualization\n",
"\n",
"## Last class\n",
"\n",
"- read in a csv file to `pandas`\n",
"- select rows and columns from a `pandas.DataFrame`\n",
"- rename columns of a `pandas.DataFrame`\n",
"\n",
"## This class\n",
"\n",
"- Transformations: create a new column in a `pandas.DataFrame`\n",
"- Data summaries: mean, median, and measures of variation\n",
"- Data visualization: boxplots, histograms, and bar charts"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## Midterm Information\n",
"\n",
"- Covers all the content we have covered up until this class.\n",
"\n",
"- A [past test](../../../practice/sample_midterm/GGR274_Midterm.ipynb) is available on the course website.\n",
"\n",
"- We have set up 2 x 2hr online midterm review sessions (Feb 6 & Feb 7) during which you can ask questions on the practice midterm. We strongly recommend you try the practice midterm before or during the review sessions.\n",
"\n",
"- The test was designed to be completed in 90 minutes.\n",
"\n",
"- The teaching team will post a link to the test by 09:00 AM, Feb. 11 on the course website.\n",
"\n",
"- You can submit anytime up until 11:00 AM on February 11.\n",
"\n",
"- The instructors will be available on a [zoom link](https://utoronto.zoom.us/j/89236564519) in case you have any questions from 09:00 AM - 11:00 AM. We will also be in the classroom, SS2118 for those who would like to use the space and in-person support.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Data Transformations\n",
"\n",
"- Time in the time use survey is measured in minutes, but it's not easy to interpret when the numbers get very large.\n",
"\n",
"> _I worked four thousand six hundred thirty two minutes last week!_\n",
"\n",
"- It would be easier if time was reported in hours.\n",
"\n",
"> _I worked over seventy seven hours last week!_\n",
"\n",
"- Converting time measured in minutes to time measured in hours is an example of a **data transformation**.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## Time use survey"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/0j/ybsv4ncn5w50v40vdh5jjlww0000gn/T/ipykernel_15264/4239799222.py:1: DeprecationWarning: \n",
"Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),\n",
"(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)\n",
"but was not found to be installed on your system.\n",
"If this would cause problems for you,\n",
"please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466\n",
" \n",
" import pandas as pd\n"
]
},
{
"data": {
"text/html": [
"
If a categorical variable has a natural ordering, it is called an ordinal variable.
\n",
"
For example, if levels96 (valid skip), 97 (don't know), 98 (refusal), 99 (not stated) are removed from gtu_110 then time use woudl be considered an ordinal variable since it's ordered from feeling rushed Everyday (1) to feeling rushed Never (6).
\n",
"
Ordinal variables clearly order categories, but the \"distance\" between categories are unknown/meaningless.
An interval variable has numerical differences, but there is no relative scale and 0 holds no meaning.
\n",
"
For example, absolute differences between 20℃ and 30℃, and between 10℃ and 20℃ are the same while relative differences between 15℃ and 30℃, and between 10℃ and 20℃ are not.
\n",
"
This is because a 0 value is arbitrary. 0℃ does not mean \"no temperature\".
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"\n",
"\n",
"- An **interval variable** is one that does have numerical distances between any two levels of the measurement scale. For example, calendar years is an interval variable."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"
\n",
"
Ratio variable
\n",
"
\n",
"
\n",
"
A ratio variable has both numerical differences and relative scales. A 0 holds semantic meaning.
\n",
"
Time use in minutes and age in years are examples of ratio (statistical) variables.
\n",
"
Time use of 0 minute means no time spent.
\n",
"
\n",
"
\n",
"
\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## What's the difference between a Statistical Variable and a Variable in python?\n",
"\n",
"- A variable in python is a location in computer memory to store a value.\n",
"\n",
"- A statistical variable is essentially a mathematical representation of data."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## Examples of implementing statistical variables in python\n",
"\n",
"If 10 people are *randomly* selected, and asked how many minutes they slept last night, then this data could be represented by an **ratio variable**.\n",
" + In python the data could be represented in `pandas.Series`, where the `Series` data type is float.\n",
"\n",
"If 10 people are *randomly* selected, and asked if they live in urban or rural areas, then this data could be represented by an **categorical variable**.\n",
" + In python the data could be represented in `pandas.Series`, where the `Series` data type is Boolean (`True` if urban, and `False` if not urban).\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Statistical Distributions\n",
"\n",
"- What is a statistical distribution?\n",
"\n",
"- How can a distribution be summarized?\n",
"\n",
"- What questions can we answer using a distribution? "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## What is the distribution of kids under 14 in Ontario?"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"1. Select rows in `prov_data_df` where `Prov label` is `Ontario`\n",
"\n",
"2. Select the column `Kids under 14`\n",
"\n",
"3. Compute the number of respondents who have 0 kids, 1 kid, etc. using `.value_counts()`"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"Kids under 14\n",
"0 3918\n",
"1 508\n",
"2 430\n",
"3 157\n",
"Name: count, dtype: int64"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Ontkidsdist = prov_data_df.loc[\n",
" prov_data_df[\"Prov label\"] == \"Ontario\",\n",
" \"Kids under 14\"\n",
"].value_counts()\n",
"\n",
"Ontkidsdist"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"pandas.core.series.Series"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(Ontkidsdist)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"### A bar plot of the distribution of kids under 14 in Ontario"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGrCAYAAADeuK1yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwGElEQVR4nO3df1RVdb7/8ReIHPHHOQwqHLjij3JSSTGl0jOVo0kcjcxGu5OTI5a/roZ1lVJijV8z+4HXpjG9pt7JClujo9bNpmT8gRhYedRihkRLxkwXtvSA1cBRU0Th+8cs9u0kWiAIH3w+1tprsffnvfd+b8/MnNfsXyegqqqqSgAAAAYJbOwGAAAAaosAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgnKDGbqChVFZW6tixY2rXrp0CAgIaux0AAPATVFVV6eTJk4qKilJg4KXPszTbAHPs2DFFR0c3dhsAAKAOjh49qk6dOl1yvNkGmHbt2kn61z+A3W5v5G4AAMBP4fP5FB0dbX2PX0qzDTDVl43sdjsBBgAAw/zY7R/cxAsAAIxDgAEAAMYhwAAAAOMQYAAAgHGuKMAsWLBAAQEBmjFjhrXs7NmzSk5OVvv27dW2bVuNHj1axcXFfusVFRUpMTFRrVu3Vnh4uGbNmqXz58/71eTk5Kh///6y2Wzq3r27MjIyrqRVAADQjNQ5wHz88cf6n//5H8XGxvotnzlzpt577z29+eabys3N1bFjxzRq1Chr/MKFC0pMTNS5c+e0c+dOrVq1ShkZGZo7d65Vc/jwYSUmJmrIkCHKz8/XjBkzNGnSJG3ZsqWu7QIAgGYkoKqqqqq2K506dUr9+/fXsmXL9Oyzz+qmm27SSy+9pLKyMnXs2FFr1qzR/fffL0k6cOCAevXqJY/Ho4EDB2rTpk265557dOzYMUVEREiSVqxYodTUVJ04cULBwcFKTU1VZmam9u3bZ+1zzJgxKi0t1ebNm2vsqby8XOXl5dZ89XPkZWVlPEYNAIAhfD6fHA7Hj35/1+kMTHJyshITExUfH++3PC8vTxUVFX7Le/bsqc6dO8vj8UiSPB6P+vTpY4UXSXK73fL5fNq/f79V88Ntu91uaxs1SU9Pl8PhsCbewgsAQPNV6wCzdu1a/e1vf1N6evpFY16vV8HBwQoNDfVbHhERIa/Xa9V8P7xUj1ePXa7G5/PpzJkzNfaVlpamsrIyazp69GhtDw0AABiiVm/iPXr0qP7zP/9TWVlZatWqVUP1VCc2m002m62x2wAAAFdBrc7A5OXlqaSkRP3791dQUJCCgoKUm5urJUuWKCgoSBERETp37pxKS0v91isuLpbT6ZQkOZ3Oi55Kqp7/sRq73a6QkJBaHSAAAGh+ahVghg4dqoKCAuXn51vTzTffrLFjx1p/t2zZUtnZ2dY6hYWFKioqksvlkiS5XC4VFBSopKTEqsnKypLdbldMTIxV8/1tVNdUbwMAAFzbanUJqV27durdu7ffsjZt2qh9+/bW8okTJyolJUVhYWGy2+169NFH5XK5NHDgQElSQkKCYmJiNG7cOC1cuFBer1dz5sxRcnKydQlo6tSpWrp0qWbPnq0JEyZo+/btWr9+vTIzM+vjmAEAgOHq/deoFy1apMDAQI0ePVrl5eVyu91atmyZNd6iRQtt3LhR06ZNk8vlUps2bTR+/HjNnz/fqunWrZsyMzM1c+ZMLV68WJ06ddLKlSvldrvru10AAGCgOr0HxgQ/9TlyAADQdPzU7+96PwODf+n65LV5uevIgsTGbgEAcA3gxxwBAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHFqFWCWL1+u2NhY2e122e12uVwubdq0yRofPHiwAgIC/KapU6f6baOoqEiJiYlq3bq1wsPDNWvWLJ0/f96vJicnR/3795fNZlP37t2VkZFR9yMEAADNTlBtijt16qQFCxbo5z//uaqqqrRq1SqNHDlSf//733XjjTdKkiZPnqz58+db67Ru3dr6+8KFC0pMTJTT6dTOnTt1/PhxJSUlqWXLlnr++eclSYcPH1ZiYqKmTp2q1atXKzs7W5MmTVJkZKTcbnd9HDMAADBcQFVVVdWVbCAsLEwvvPCCJk6cqMGDB+umm27SSy+9VGPtpk2bdM899+jYsWOKiIiQJK1YsUKpqak6ceKEgoODlZqaqszMTO3bt89ab8yYMSotLdXmzZsv2Ud5ebnKy8uteZ/Pp+joaJWVlclut1/JIdZJ1yczr/o+m4IjCxIbuwUAgMF8Pp8cDsePfn/X+R6YCxcuaO3atTp9+rRcLpe1fPXq1erQoYN69+6ttLQ0fffdd9aYx+NRnz59rPAiSW63Wz6fT/v377dq4uPj/fbldrvl8Xgu2096erocDoc1RUdH1/XQAABAE1erS0iSVFBQIJfLpbNnz6pt27basGGDYmJiJEkPPvigunTpoqioKO3du1epqakqLCzU22+/LUnyer1+4UWSNe/1ei9b4/P5dObMGYWEhNTYV1pamlJSUqz56jMwAACg+al1gOnRo4fy8/NVVlamt956S+PHj1dubq5iYmI0ZcoUq65Pnz6KjIzU0KFDdejQIV1//fX12vgP2Ww22Wy2Bt0HAABoGmp9CSk4OFjdu3dXXFyc0tPT1bdvXy1evLjG2gEDBkiSvvjiC0mS0+lUcXGxX031vNPpvGyN3W6/5NkXAABwbbni98BUVlb63Tz7ffn5+ZKkyMhISZLL5VJBQYFKSkqsmqysLNntdusylMvlUnZ2tt92srKy/O6zAQAA17ZaXUJKS0vT8OHD1blzZ508eVJr1qxRTk6OtmzZokOHDmnNmjW6++671b59e+3du1czZ87UoEGDFBsbK0lKSEhQTEyMxo0bp4ULF8rr9WrOnDlKTk62Lv9MnTpVS5cu1ezZszVhwgRt375d69evV2bmtflUDwAAuFitAkxJSYmSkpJ0/PhxORwOxcbGasuWLbrrrrt09OhRbdu2TS+99JJOnz6t6OhojR49WnPmzLHWb9GihTZu3Khp06bJ5XKpTZs2Gj9+vN97Y7p166bMzEzNnDlTixcvVqdOnbRy5UreAQMAACxX/B6YpuqnPkfeUHgPDAAAtdfg74EBAABoLAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGCcWgWY5cuXKzY2Vna7XXa7XS6XS5s2bbLGz549q+TkZLVv315t27bV6NGjVVxc7LeNoqIiJSYmqnXr1goPD9esWbN0/vx5v5qcnBz1799fNptN3bt3V0ZGRt2PEAAANDu1CjCdOnXSggULlJeXp08++UR33nmnRo4cqf3790uSZs6cqffee09vvvmmcnNzdezYMY0aNcpa/8KFC0pMTNS5c+e0c+dOrVq1ShkZGZo7d65Vc/jwYSUmJmrIkCHKz8/XjBkzNGnSJG3ZsqWeDhkAAJguoKqqqupKNhAWFqYXXnhB999/vzp27Kg1a9bo/vvvlyQdOHBAvXr1ksfj0cCBA7Vp0ybdc889OnbsmCIiIiRJK1asUGpqqk6cOKHg4GClpqYqMzNT+/bts/YxZswYlZaWavPmzZfso7y8XOXl5da8z+dTdHS0ysrKZLfbr+QQ66Trk5lXfZ9NwZEFiY3dAgDAYD6fTw6H40e/v+t8D8yFCxe0du1anT59Wi6XS3l5eaqoqFB8fLxV07NnT3Xu3Fkej0eS5PF41KdPHyu8SJLb7ZbP57PO4ng8Hr9tVNdUb+NS0tPT5XA4rCk6OrquhwYAAJq4WgeYgoICtW3bVjabTVOnTtWGDRsUExMjr9er4OBghYaG+tVHRETI6/VKkrxer194qR6vHrtcjc/n05kzZy7ZV1pamsrKyqzp6NGjtT00AABgiKDartCjRw/l5+errKxMb731lsaPH6/c3NyG6K1WbDabbDZbY7cBAACugloHmODgYHXv3l2SFBcXp48//liLFy/WAw88oHPnzqm0tNTvLExxcbGcTqckyel0as+ePX7bq35K6fs1P3xyqbi4WHa7XSEhIbVtFwAANENX/B6YyspKlZeXKy4uTi1btlR2drY1VlhYqKKiIrlcLkmSy+VSQUGBSkpKrJqsrCzZ7XbFxMRYNd/fRnVN9TYAAABqdQYmLS1Nw4cPV+fOnXXy5EmtWbNGOTk52rJlixwOhyZOnKiUlBSFhYXJbrfr0Ucflcvl0sCBAyVJCQkJiomJ0bhx47Rw4UJ5vV7NmTNHycnJ1uWfqVOnaunSpZo9e7YmTJig7du3a/369crMvDaf6gEAABerVYApKSlRUlKSjh8/LofDodjYWG3ZskV33XWXJGnRokUKDAzU6NGjVV5eLrfbrWXLllnrt2jRQhs3btS0adPkcrnUpk0bjR8/XvPnz7dqunXrpszMTM2cOVOLFy9Wp06dtHLlSrnd7no6ZAAAYLorfg9MU/VTnyNvKLwHBgCA2mvw98AAAAA0FgIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGCcWgWY9PR03XLLLWrXrp3Cw8N13333qbCw0K9m8ODBCggI8JumTp3qV1NUVKTExES1bt1a4eHhmjVrls6fP+9Xk5OTo/79+8tms6l79+7KyMio2xECAIBmp1YBJjc3V8nJydq1a5eysrJUUVGhhIQEnT592q9u8uTJOn78uDUtXLjQGrtw4YISExN17tw57dy5U6tWrVJGRobmzp1r1Rw+fFiJiYkaMmSI8vPzNWPGDE2aNElbtmy5wsMFAADNQVBtijdv3uw3n5GRofDwcOXl5WnQoEHW8tatW8vpdNa4ja1bt+qzzz7Ttm3bFBERoZtuuknPPPOMUlNTNW/ePAUHB2vFihXq1q2bXnzxRUlSr1699OGHH2rRokVyu921PUYAANDMXNE9MGVlZZKksLAwv+WrV69Whw4d1Lt3b6Wlpem7776zxjwej/r06aOIiAhrmdvtls/n0/79+62a+Ph4v2263W55PJ5L9lJeXi6fz+c3AQCA5qlWZ2C+r7KyUjNmzNBtt92m3r17W8sffPBBdenSRVFRUdq7d69SU1NVWFiot99+W5Lk9Xr9woska97r9V62xufz6cyZMwoJCbmon/T0dD399NN1PRwAAGCQOgeY5ORk7du3Tx9++KHf8ilTplh/9+nTR5GRkRo6dKgOHTqk66+/vu6d/oi0tDSlpKRY8z6fT9HR0Q22PwAA0HjqdAlp+vTp2rhxo95//3116tTpsrUDBgyQJH3xxReSJKfTqeLiYr+a6vnq+2YuVWO322s8+yJJNptNdrvdbwIAAM1TrQJMVVWVpk+frg0bNmj79u3q1q3bj66Tn58vSYqMjJQkuVwuFRQUqKSkxKrJysqS3W5XTEyMVZOdne23naysLLlcrtq0CwAAmqlaBZjk5GT96U9/0po1a9SuXTt5vV55vV6dOXNGknTo0CE988wzysvL05EjR/Tuu+8qKSlJgwYNUmxsrCQpISFBMTExGjdunD799FNt2bJFc+bMUXJysmw2myRp6tSp+vLLLzV79mwdOHBAy5Yt0/r16zVz5sx6PnwAAGCiWgWY5cuXq6ysTIMHD1ZkZKQ1rVu3TpIUHBysbdu2KSEhQT179tTjjz+u0aNH67333rO20aJFC23cuFEtWrSQy+XSb3/7WyUlJWn+/PlWTbdu3ZSZmamsrCz17dtXL774olauXMkj1AAAQJIUUFVVVdXYTTQEn88nh8OhsrKyRrkfpuuTmVd9n03BkQWJjd0CAMBgP/X7m99CAgAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADj1CrApKen65ZbblG7du0UHh6u++67T4WFhX41Z8+eVXJystq3b6+2bdtq9OjRKi4u9qspKipSYmKiWrdurfDwcM2aNUvnz5/3q8nJyVH//v1ls9nUvXt3ZWRk1O0IAQBAs1OrAJObm6vk5GTt2rVLWVlZqqioUEJCgk6fPm3VzJw5U++9957efPNN5ebm6tixYxo1apQ1fuHCBSUmJurcuXPauXOnVq1apYyMDM2dO9eqOXz4sBITEzVkyBDl5+drxowZmjRpkrZs2VIPhwwAAEwXUFVVVVXXlU+cOKHw8HDl5uZq0KBBKisrU8eOHbVmzRrdf//9kqQDBw6oV69e8ng8GjhwoDZt2qR77rlHx44dU0REhCRpxYoVSk1N1YkTJxQcHKzU1FRlZmZq37591r7GjBmj0tJSbd68+Sf15vP55HA4VFZWJrvdXtdDrLOuT2Ze9X02BUcWJDZ2CwAAg/3U7+8rugemrKxMkhQWFiZJysvLU0VFheLj462anj17qnPnzvJ4PJIkj8ejPn36WOFFktxut3w+n/bv32/VfH8b1TXV26hJeXm5fD6f3wQAAJqnOgeYyspKzZgxQ7fddpt69+4tSfJ6vQoODlZoaKhfbUREhLxer1Xz/fBSPV49drkan8+nM2fO1NhPenq6HA6HNUVHR9f10AAAQBNX5wCTnJysffv2ae3atfXZT52lpaWprKzMmo4ePdrYLQEAgAYSVJeVpk+fro0bN2rHjh3q1KmTtdzpdOrcuXMqLS31OwtTXFwsp9Np1ezZs8dve9VPKX2/5odPLhUXF8tutyskJKTGnmw2m2w2W10OBwAAGKZWZ2Cqqqo0ffp0bdiwQdu3b1e3bt38xuPi4tSyZUtlZ2dbywoLC1VUVCSXyyVJcrlcKigoUElJiVWTlZUlu92umJgYq+b726iuqd4GAAC4ttXqDExycrLWrFmjv/zlL2rXrp11z4rD4VBISIgcDocmTpyolJQUhYWFyW6369FHH5XL5dLAgQMlSQkJCYqJidG4ceO0cOFCeb1ezZkzR8nJydYZlKlTp2rp0qWaPXu2JkyYoO3bt2v9+vXKzLw2n+wBAAD+anUGZvny5SorK9PgwYMVGRlpTevWrbNqFi1apHvuuUejR4/WoEGD5HQ69fbbb1vjLVq00MaNG9WiRQu5XC799re/VVJSkubPn2/VdOvWTZmZmcrKylLfvn314osvauXKlXK73fVwyAAAwHRX9B6Ypoz3wDQO3gMDALgSV+U9MAAAAI2BAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjFPrALNjxw6NGDFCUVFRCggI0DvvvOM3/tBDDykgIMBvGjZsmF/Nt99+q7Fjx8putys0NFQTJ07UqVOn/Gr27t2rO+64Q61atVJ0dLQWLlxY+6MDAADNUq0DzOnTp9W3b1+9/PLLl6wZNmyYjh8/bk1//vOf/cbHjh2r/fv3KysrSxs3btSOHTs0ZcoUa9zn8ykhIUFdunRRXl6eXnjhBc2bN09//OMfa9suAABohoJqu8Lw4cM1fPjwy9bYbDY5nc4axz7//HNt3rxZH3/8sW6++WZJ0n//93/r7rvv1u9//3tFRUVp9erVOnfunF577TUFBwfrxhtvVH5+vv7whz/4BR0AAHBtapB7YHJychQeHq4ePXpo2rRp+uabb6wxj8ej0NBQK7xIUnx8vAIDA7V7926rZtCgQQoODrZq3G63CgsL9c9//rPGfZaXl8vn8/lNAACgear3ADNs2DC98cYbys7O1n/9138pNzdXw4cP14ULFyRJXq9X4eHhfusEBQUpLCxMXq/XqomIiPCrqZ6vrvmh9PR0ORwOa4qOjq7vQwMAAE1ErS8h/ZgxY8ZYf/fp00exsbG6/vrrlZOTo6FDh9b37ixpaWlKSUmx5n0+HyEGAIBmqsEfo77uuuvUoUMHffHFF5Ikp9OpkpISv5rz58/r22+/te6bcTqdKi4u9qupnr/UvTU2m012u91vAgAAzVODB5ivvvpK33zzjSIjIyVJLpdLpaWlysvLs2q2b9+uyspKDRgwwKrZsWOHKioqrJqsrCz16NFDP/vZzxq6ZQAA0MTVOsCcOnVK+fn5ys/PlyQdPnxY+fn5Kioq0qlTpzRr1izt2rVLR44cUXZ2tkaOHKnu3bvL7XZLknr16qVhw4Zp8uTJ2rNnjz766CNNnz5dY8aMUVRUlCTpwQcfVHBwsCZOnKj9+/dr3bp1Wrx4sd8lIgAAcO2qdYD55JNP1K9fP/Xr10+SlJKSon79+mnu3Llq0aKF9u7dq3vvvVc33HCDJk6cqLi4OH3wwQey2WzWNlavXq2ePXtq6NChuvvuu3X77bf7vePF4XBo69atOnz4sOLi4vT4449r7ty5PEINAAAkSQFVVVVVjd1EQ/D5fHI4HCorK2uU+2G6Ppl51ffZFBxZkNjYLQAADPZTv7/5LSQAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAME6tA8yOHTs0YsQIRUVFKSAgQO+8847feFVVlebOnavIyEiFhIQoPj5eBw8e9Kv59ttvNXbsWNntdoWGhmrixIk6deqUX83evXt1xx13qFWrVoqOjtbChQtrf3QAAKBZqnWAOX36tPr27auXX365xvGFCxdqyZIlWrFihXbv3q02bdrI7Xbr7NmzVs3YsWO1f/9+ZWVlaePGjdqxY4emTJlijft8PiUkJKhLly7Ky8vTCy+8oHnz5umPf/xjHQ4RAAA0NwFVVVVVdV45IEAbNmzQfffdJ+lfZ1+ioqL0+OOP64knnpAklZWVKSIiQhkZGRozZow+//xzxcTE6OOPP9bNN98sSdq8ebPuvvtuffXVV4qKitLy5cv1u9/9Tl6vV8HBwZKkJ598Uu+8844OHDjwk3rz+XxyOBwqKyuT3W6v6yHWWdcnM6/6PpuCIwsSG7sFAIDBfur3d73eA3P48GF5vV7Fx8dbyxwOhwYMGCCPxyNJ8ng8Cg0NtcKLJMXHxyswMFC7d++2agYNGmSFF0lyu90qLCzUP//5zxr3XV5eLp/P5zcBAIDmqV4DjNfrlSRFRET4LY+IiLDGvF6vwsPD/caDgoIUFhbmV1PTNr6/jx9KT0+Xw+Gwpujo6Cs/IAAA0CQ1m6eQ0tLSVFZWZk1Hjx5t7JYAAEADqdcA43Q6JUnFxcV+y4uLi60xp9OpkpISv/Hz58/r22+/9aupaRvf38cP2Ww22e12vwkAADRP9RpgunXrJqfTqezsbGuZz+fT7t275XK5JEkul0ulpaXKy8uzarZv367KykoNGDDAqtmxY4cqKiqsmqysLPXo0UM/+9nP6rNlAABgoFoHmFOnTik/P1/5+fmS/nXjbn5+voqKihQQEKAZM2bo2Wef1bvvvquCggIlJSUpKirKelKpV69eGjZsmCZPnqw9e/boo48+0vTp0zVmzBhFRUVJkh588EEFBwdr4sSJ2r9/v9atW6fFixcrJSWl3g4cAACYK6i2K3zyyScaMmSINV8dKsaPH6+MjAzNnj1bp0+f1pQpU1RaWqrbb79dmzdvVqtWrax1Vq9erenTp2vo0KEKDAzU6NGjtWTJEmvc4XBo69atSk5OVlxcnDp06KC5c+f6vSsGAABcu67oPTBNGe+BaRy8BwYAcCUa5T0wAAAAVwMBBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYp94DzLx58xQQEOA39ezZ0xo/e/askpOT1b59e7Vt21ajR49WcXGx3zaKioqUmJio1q1bKzw8XLNmzdL58+fru1UAAGCooIbY6I033qht27b9306C/m83M2fOVGZmpt588005HA5Nnz5do0aN0kcffSRJunDhghITE+V0OrVz504dP35cSUlJatmypZ5//vmGaBcAABimQQJMUFCQnE7nRcvLysr06quvas2aNbrzzjslSa+//rp69eqlXbt2aeDAgdq6das+++wzbdu2TREREbrpppv0zDPPKDU1VfPmzVNwcHBDtAwAAAzSIAHm4MGDioqKUqtWreRyuZSenq7OnTsrLy9PFRUVio+Pt2p79uypzp07y+PxaODAgfJ4POrTp48iIiKsGrfbrWnTpmn//v3q169fjfssLy9XeXm5Ne/z+Rri0IAadX0ys7FbaBRHFiQ2dgsArlH1fg/MgAEDlJGRoc2bN2v58uU6fPiw7rjjDp08eVJer1fBwcEKDQ31WyciIkJer1eS5PV6/cJL9Xj12KWkp6fL4XBYU3R0dP0eGAAAaDLq/QzM8OHDrb9jY2M1YMAAdenSRevXr1dISEh9786SlpamlJQUa97n8xFiAABophr8MerQ0FDdcMMN+uKLL+R0OnXu3DmVlpb61RQXF1v3zDidzoueSqqer+m+mmo2m012u91vAgAAzVODB5hTp07p0KFDioyMVFxcnFq2bKns7GxrvLCwUEVFRXK5XJIkl8ulgoIClZSUWDVZWVmy2+2KiYlp6HYBAIAB6v0S0hNPPKERI0aoS5cuOnbsmJ566im1aNFCv/nNb+RwODRx4kSlpKQoLCxMdrtdjz76qFwulwYOHChJSkhIUExMjMaNG6eFCxfK6/Vqzpw5Sk5Ols1mq+92AQCAgeo9wHz11Vf6zW9+o2+++UYdO3bU7bffrl27dqljx46SpEWLFikwMFCjR49WeXm53G63li1bZq3fokULbdy4UdOmTZPL5VKbNm00fvx4zZ8/v75bBQAAhqr3ALN27drLjrdq1Uovv/yyXn755UvWdOnSRX/961/ruzUAqBc8Ng80Pn4LCQAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAME5QYzcAAEBT1vXJzMZuoVEcWZDY2C1cFmdgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxmnSAefnll9W1a1e1atVKAwYM0J49exq7JQAA0AQ02QCzbt06paSk6KmnntLf/vY39e3bV263WyUlJY3dGgAAaGRNNsD84Q9/0OTJk/Xwww8rJiZGK1asUOvWrfXaa681dmsAAKCRNckfczx37pzy8vKUlpZmLQsMDFR8fLw8Hk+N65SXl6u8vNyaLysrkyT5fL6GbfYSKsu/a5T9NrbG+vdubHze1xY+72sLn3fj7LeqquqydU0ywHz99de6cOGCIiIi/JZHRETowIEDNa6Tnp6up59++qLl0dHRDdIjauZ4qbE7wNXE531t4fO+tjT2533y5Ek5HI5LjjfJAFMXaWlpSklJseYrKyv17bffqn379goICGjEzq4un8+n6OhoHT16VHa7vbHbQQPj87628HlfW67Vz7uqqkonT55UVFTUZeuaZIDp0KGDWrRooeLiYr/lxcXFcjqdNa5js9lks9n8loWGhjZUi02e3W6/pv4Df63j87628HlfW67Fz/tyZ16qNcmbeIODgxUXF6fs7GxrWWVlpbKzs+VyuRqxMwAA0BQ0yTMwkpSSkqLx48fr5ptv1q233qqXXnpJp0+f1sMPP9zYrQEAgEbWZAPMAw88oBMnTmju3Lnyer266aabtHnz5otu7IU/m82mp5566qLLaWie+LyvLXze1xY+78sLqPqx55QAAACamCZ5DwwAAMDlEGAAAIBxCDAAAMA4BBgAAGAcAgwAADBOk32MGj/N119/rddee00ej0der1eS5HQ69Ytf/EIPPfSQOnbs2MgdAgBQ/zgDY7CPP/5YN9xwg5YsWSKHw6FBgwZp0KBBcjgcWrJkiXr27KlPPvmksdvEVXL06FFNmDChsdtAPTpz5ow+/PBDffbZZxeNnT17Vm+88UYjdIWG8vnnn+v111+3frT4wIEDmjZtmiZMmKDt27c3cndND++BMdjAgQPVt29frVix4qIfrKyqqtLUqVO1d+9eeTyeRuoQV9Onn36q/v3768KFC43dCurBP/7xDyUkJKioqEgBAQG6/fbbtXbtWkVGRkr612/DRUVF8Xk3E5s3b9bIkSPVtm1bfffdd9qwYYOSkpLUt29fVVZWKjc3V1u3btWdd97Z2K02GQQYg4WEhOjvf/+7evbsWeP4gQMH1K9fP505c+Yqd4aG8O677152/Msvv9Tjjz/OF1oz8atf/UoVFRXKyMhQaWmpZsyYoc8++0w5OTnq3LkzAaaZ+cUvfqE777xTzz77rNauXatHHnlE06ZN03PPPSdJSktLU15enrZu3drInTYdBBiDdevWTU8//bSSkpJqHH/jjTc0d+5cHTly5Oo2hgYRGBiogIAAXe6/sgEBAXyhNRMRERHatm2b+vTpI+lfZ1UfeeQR/fWvf9X777+vNm3aEGCaEYfDoby8PHXv3l2VlZWy2Wzas2eP+vXrJ0nat2+f4uPjrXsdwU28RnviiSc0ZcoU5eXlaejQodbvRBUXFys7O1uvvPKKfv/73zdyl6gvkZGRWrZsmUaOHFnjeH5+vuLi4q5yV2goZ86cUVDQ//1PdEBAgJYvX67p06frl7/8pdasWdOI3aEhVN8KEBgYqFatWsnhcFhj7dq1U1lZWWO11iQRYAyWnJysDh06aNGiRVq2bJn1/8RatGihuLg4ZWRk6Ne//nUjd4n6EhcXp7y8vEsGmB87OwOzVN+E36tXL7/lS5culSTde++9jdEWGkjXrl118OBBXX/99ZIkj8ejzp07W+NFRUXW/U/4FwKM4R544AE98MADqqio0Ndffy1J6tChg1q2bNnInaG+zZo1S6dPn77kePfu3fX+++9fxY7QkH71q1/pz3/+s8aNG3fR2NKlS1VZWakVK1Y0QmdoCNOmTfO7HNi7d2+/8U2bNnED7w9wDwwAADAO74EBAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAlzV48GDNmDHjsjVdu3bVSy+9dFX6qY2AgAC98847jd0GgAZAgAGuYQ899JDuu+8+v2VvvfWWWrVqpRdffFGS9Pbbb+uZZ55phO6aruPHj+vBBx/UDTfcoMDAwB8NeGvXrlVAQMBF/9YA6o4AA8CycuVKjR07VsuXL9fjjz8uSQoLC1O7du0aubPGce7cuRqXl5eXq2PHjpozZ4769u172W0cOXJETzzxhO64446GaBG4ZhFgAEiSFi5cqEcffVRr167Vww8/bC3/4SWkkpISjRgxQiEhIerWrZtWr17tt52qqirNmzdPnTt3ls1mU1RUlB577LFL7rems0AzZszQ4MGD/Xp47LHHNHv2bIWFhcnpdGrevHl+6xw8eFCDBg1Sq1atFBMTo6ysrIv2dfToUf36179WaGiowsLCNHLkSL/fCqvu5bnnnlNUVJR69OhRY89du3bV4sWLlZSU5Pe69x+6cOGCxo4dq6efflrXXXfdJesA1B5v4gWg1NRULVu2TBs3btTQoUMvW/vQQw/p2LFjev/999WyZUs99thjKikpscb/93//V4sWLdLatWt14403yuv16tNPP73iHletWqWUlBTt3r1bHo9HDz30kG677Tbdddddqqys1KhRoxQREaHdu3errKzsoss6FRUVcrvdcrlc+uCDDxQUFKRnn31Ww4YN0969exUcHCxJys7Olt1urzEA1db8+fMVHh6uiRMn6oMPPrji7QH4PwQY4Bq3adMm/eUvf1F2dvaPvqr8H//4hzZt2qQ9e/bolltukSS9+uqrfr/XU1RUJKfTqfj4eLVs2VKdO3fWrbfeesV9xsbG6qmnnpIk/fznP9fSpUuVnZ2tu+66S9u2bdOBAwe0ZcsWRUVFSZKef/55DR8+3Fp/3bp1qqys1MqVK60fzXv99dcVGhqqnJwcJSQkSJLatGmjlStXWoGmrj788EO9+uqrys/Pv6LtAKgZl5CAa1xsbKy6du2qp556SqdOnbps7eeff66goCC/X73u2bOnQkNDrfl///d/15kzZ3Tddddp8uTJ2rBhg86fP18vfX5fZGSkdebn888/V3R0tBVeJMnlcvnVf/rpp/riiy/Url07tW3bVm3btlVYWJjOnj2rQ4cOWXV9+vS54vBy8uRJjRs3Tq+88oo6dOhwRdsCUDPOwADXuH/7t3/TW2+9pSFDhmjYsGHatGnTFd20Gx0drcLCQm3btk1ZWVl65JFH9MILLyg3N7fGHxkNDAy86Fe0KyoqLqr74boBAQGqrKz8yX2dOnVKcXFxF92zI0kdO3a0/m7Tps1P3ualHDp0SEeOHNGIESOsZdW9BgUFqbCw0PrVYQB1wxkYAOrSpYtyc3Pl9Xo1bNgwnTx5ssa6nj176vz588rLy7OWFRYWqrS01K8uJCREI0aM0JIlS5STkyOPx6OCgoIat9mxY0cdP37cb1ltL7v06tVLR48e9dvOrl27/Gr69++vgwcPKjw8XN27d/ebLncjbl307NlTBQUFys/Pt6Z7771XQ4YMUX5+vqKjo+t1f8C1iAADQNK/zpzk5OSopKREbrdbPp/vopoePXpo2LBh+o//+A/t3r1beXl5mjRpkkJCQqyajIwMvfrqq9q3b5++/PJL/elPf1JISIi6dOlS437vvPNOffLJJ3rjjTd08OBBPfXUU9q3b1+teo+Pj9cNN9yg8ePH69NPP9UHH3yg3/3ud341Y8eOVYcOHTRy5Eh98MEHOnz4sHJycvTYY4/pq6++qtX+JFnB5NSpUzpx4oTy8/P12WefSZJatWql3r17+02hoaFq166devfufcWXqAAQYAB8T6dOnZSTk6Ovv/76kiHm9ddfV1RUlH75y19q1KhRmjJlisLDw63x0NBQvfLKK7rtttsUGxurbdu26b333lP79u1r3Kfb7db/+3//T7Nnz9Ytt9yikydPKikpqVZ9BwYGasOGDTpz5oxuvfVWTZo0Sc8995xfTevWrbVjxw517txZo0aNUq9evTRx4kSdPXtWdru9VvuTpH79+qlfv37Ky8vTmjVr1K9fP91999213g6Augmo+uHFZwAAgCaOMzAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMM7/B+rBlL3qiVpwAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Ontkidsdist.plot.bar();"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"If we want to plot proportions instead of counts then we can transform `Ontkidsdist` by dividing by the total number of observations."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"Kids under 14\n",
"0 0.781568\n",
"1 0.101337\n",
"2 0.085777\n",
"3 0.031319\n",
"Name: count, dtype: float64"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Ontkidsdist_prop = Ontkidsdist / Ontkidsdist.sum()\n",
"Ontkidsdist_prop"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGrCAYAAAASIZeZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmf0lEQVR4nO3df3RU9Z3/8ddMIBN+ZSIGJpAOTpUqsECCCUmDVdSOhi0Hoe62qbomTiVu8XentpKqiYg4bFWaukSzRaK1lianLtruglGZNa4es6YmjUoF/LWY+GMmyXGdwYAJZub7h6fDN5IAE0I+JHk+zrnn1DufO/edTts8e+dmxhKNRqMCAAAwxGp6AAAAMLoRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRY0wPcCwikYg++ugjTZo0SRaLxfQ4AADgGESjUe3bt0/Tp0+X1dr/9Y9hESMfffSRnE6n6TEAAMAAtLa26mtf+1q/jw+LGJk0aZKkL3+Y5ORkw9MAAIBjEQ6H5XQ6Y7/H+zMsYuRvb80kJycTIwAADDNHu8WCG1gBAIBRxAgAADCKGAEAAEYNKEYqKirkcrmUlJSk3NxcNTQ0HHF9eXm5zjrrLI0bN05Op1M//vGP9fnnnw9oYAAAMLLEHSM1NTXyer0qKytTU1OTMjIylJ+fr7a2tj7Xb9myRatXr1ZZWZl27dqlzZs3q6amRj//+c+Pe3gAADD8xR0jGzZsUHFxsTwej+bMmaPKykqNHz9eVVVVfa5/+eWXdc455+jyyy+Xy+XSxRdfrMsuu+yoV1MAAMDoEFeMdHd3q7GxUW63+9ATWK1yu92qr6/v85hFixapsbExFh/vvfeetm/fru985zv9nqerq0vhcLjXBgAARqa4Pmeko6NDPT09cjgcvfY7HA7t3r27z2Muv/xydXR06Fvf+pai0ai++OIL/ehHPzri2zQ+n09r1qyJZzQAADBMnfC/pqmrq9M999yjBx98UE1NTdq6dau2bdumtWvX9ntMSUmJQqFQbGttbT3RYwIAAEPiujKSmpqqhIQEBYPBXvuDwaDS0tL6POaOO+7QlVdeqZUrV0qS5s2bp87OTl1zzTW67bbb+vziHJvNJpvNFs9oAABgmIrrykhiYqKysrLk9/tj+yKRiPx+v/Ly8vo8Zv/+/YcFR0JCgqQvv80PAACMbnF/N43X61VRUZGys7OVk5Oj8vJydXZ2yuPxSJIKCwuVnp4un88nSVq2bJk2bNigBQsWKDc3V++8847uuOMOLVu2LBYlAABg9Io7RgoKCtTe3q7S0lIFAgFlZmaqtrY2dlNrS0tLrysht99+uywWi26//XZ9+OGHmjJlipYtW6Z169YN3k8BAACGLUt0GLxXEg6HZbfbFQqF+NZeAACGiWP9/c130wAAAKPifptmNHKt3mZ6BCP2rl9qegQAwCjAlREAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjBhQjFRUVcrlcSkpKUm5urhoaGvpde/7558tisRy2LV26dMBDAwCAkSPuGKmpqZHX61VZWZmampqUkZGh/Px8tbW19bl+69at+vjjj2Pbzp07lZCQoO9973vHPTwAABj+4o6RDRs2qLi4WB6PR3PmzFFlZaXGjx+vqqqqPtdPnjxZaWlpse25557T+PHjiREAACApzhjp7u5WY2Oj3G73oSewWuV2u1VfX39Mz7F582b94Ac/0IQJE/pd09XVpXA43GsDAAAjU1wx0tHRoZ6eHjkcjl77HQ6HAoHAUY9vaGjQzp07tXLlyiOu8/l8stvtsc3pdMYzJgAAGEaG9K9pNm/erHnz5iknJ+eI60pKShQKhWJba2vrEE0IAACG2ph4FqempiohIUHBYLDX/mAwqLS0tCMe29nZqerqat11111HPY/NZpPNZotnNAAAMEzFdWUkMTFRWVlZ8vv9sX2RSER+v195eXlHPPYPf/iDurq69E//9E8DmxQAAIxIcV0ZkSSv16uioiJlZ2crJydH5eXl6uzslMfjkSQVFhYqPT1dPp+v13GbN2/WihUrdOqppw7O5AAAYESIO0YKCgrU3t6u0tJSBQIBZWZmqra2NnZTa0tLi6zW3hdc9uzZo5deeknPPvvs4EwNAABGDEs0Go2aHuJowuGw7Ha7QqGQkpOTh/z8rtXbhvycJ4O96/mUXADAwB3r72++mwYAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKMGFCMVFRVyuVxKSkpSbm6uGhoajrj+008/1XXXXadp06bJZrPpzDPP1Pbt2wc0MAAAGFnGxHtATU2NvF6vKisrlZubq/LycuXn52vPnj2aOnXqYeu7u7t10UUXaerUqXriiSeUnp6u999/XykpKYMxPwAAGObijpENGzaouLhYHo9HklRZWalt27apqqpKq1evPmx9VVWVPvnkE7388ssaO3asJMnlch3f1AAAYMSI622a7u5uNTY2yu12H3oCq1Vut1v19fV9HvOnP/1JeXl5uu666+RwODR37lzdc8896unp6fc8XV1dCofDvTYAADAyxRUjHR0d6unpkcPh6LXf4XAoEAj0ecx7772nJ554Qj09Pdq+fbvuuOMO3X///br77rv7PY/P55Pdbo9tTqcznjEBAMAwcsL/miYSiWjq1Kn69a9/raysLBUUFOi2225TZWVlv8eUlJQoFArFttbW1hM9JgAAMCSue0ZSU1OVkJCgYDDYa38wGFRaWlqfx0ybNk1jx45VQkJCbN/s2bMVCATU3d2txMTEw46x2Wyy2WzxjAYAAIapuK6MJCYmKisrS36/P7YvEonI7/crLy+vz2POOeccvfPOO4pEIrF9b731lqZNm9ZniAAAgNEl7rdpvF6vNm3apN/85jfatWuXVq1apc7Ozthf1xQWFqqkpCS2ftWqVfrkk09000036a233tK2bdt0zz336Lrrrhu8nwIAAAxbcf9pb0FBgdrb21VaWqpAIKDMzEzV1tbGbmptaWmR1XqocZxOp5555hn9+Mc/1vz585Wenq6bbrpJt9566+D9FAAAYNiyRKPRqOkhjiYcDstutysUCik5OXnIz+9avW3Iz3ky2Lt+qekRAADD2LH+/ua7aQAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMGpAMVJRUSGXy6WkpCTl5uaqoaGh37WPPvqoLBZLry0pKWnAAwMAgJEl7hipqamR1+tVWVmZmpqalJGRofz8fLW1tfV7THJysj7++OPY9v777x/X0AAAYOSIO0Y2bNig4uJieTwezZkzR5WVlRo/fryqqqr6PcZisSgtLS22ORyO4xoaAACMHHHFSHd3txobG+V2uw89gdUqt9ut+vr6fo/77LPPdNppp8npdGr58uX661//esTzdHV1KRwO99oAAMDIFFeMdHR0qKen57ArGw6HQ4FAoM9jzjrrLFVVVemPf/yjHn/8cUUiES1atEgffPBBv+fx+Xyy2+2xzel0xjMmAAAYRk74X9Pk5eWpsLBQmZmZWrx4sbZu3aopU6bo3/7t3/o9pqSkRKFQKLa1trae6DEBAIAhY+JZnJqaqoSEBAWDwV77g8Gg0tLSjuk5xo4dqwULFuidd97pd43NZpPNZotnNAAAMEzFdWUkMTFRWVlZ8vv9sX2RSER+v195eXnH9Bw9PT164403NG3atPgmBQAAI1JcV0Ykyev1qqioSNnZ2crJyVF5ebk6Ozvl8XgkSYWFhUpPT5fP55Mk3XXXXfrmN7+pmTNn6tNPP9W9996r999/XytXrhzcnwQAAAxLccdIQUGB2tvbVVpaqkAgoMzMTNXW1sZuam1paZHVeuiCy//93/+puLhYgUBAp5xyirKysvTyyy9rzpw5g/dTAACAYcsSjUajpoc4mnA4LLvdrlAopOTk5CE/v2v1tiE/58lg7/qlpkcAAAxjx/r7m++mAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAqAHFSEVFhVwul5KSkpSbm6uGhoZjOq66uloWi0UrVqwYyGkBAMAIFHeM1NTUyOv1qqysTE1NTcrIyFB+fr7a2tqOeNzevXt1yy236Nxzzx3wsAAAYOSJO0Y2bNig4uJieTwezZkzR5WVlRo/fryqqqr6Paanp0dXXHGF1qxZo9NPP/24BgYAACNLXDHS3d2txsZGud3uQ09gtcrtdqu+vr7f4+666y5NnTpVV1999TGdp6urS+FwuNcGAABGprhipKOjQz09PXI4HL32OxwOBQKBPo956aWXtHnzZm3atOmYz+Pz+WS322Ob0+mMZ0wAADCMnNC/ptm3b5+uvPJKbdq0Sampqcd8XElJiUKhUGxrbW09gVMCAACTxsSzODU1VQkJCQoGg732B4NBpaWlHbb+3Xff1d69e7Vs2bLYvkgk8uWJx4zRnj17dMYZZxx2nM1mk81mi2c0AAAwTMV1ZSQxMVFZWVny+/2xfZFIRH6/X3l5eYetnzVrlt544w01NzfHtksuuUQXXHCBmpubefsFAADEd2VEkrxer4qKipSdna2cnByVl5ers7NTHo9HklRYWKj09HT5fD4lJSVp7ty5vY5PSUmRpMP2AwCA0SnuGCkoKFB7e7tKS0sVCASUmZmp2tra2E2tLS0tslr5YFcAAHBsLNFoNGp6iKMJh8Oy2+0KhUJKTk4e8vO7Vm8b8nOeDPauX2p6BADAMHasv7+5hAEAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFEDipGKigq5XC4lJSUpNzdXDQ0N/a7dunWrsrOzlZKSogkTJigzM1O//e1vBzwwAAAYWeKOkZqaGnm9XpWVlampqUkZGRnKz89XW1tbn+snT56s2267TfX19Xr99dfl8Xjk8Xj0zDPPHPfwAABg+LNEo9FoPAfk5uZq4cKF2rhxoyQpEonI6XTqhhtu0OrVq4/pOc4++2wtXbpUa9euPab14XBYdrtdoVBIycnJ8Yw7KFyrtw35OU8Ge9cvNT0CAGAYO9bf33FdGenu7lZjY6PcbvehJ7Ba5Xa7VV9ff9Tjo9Go/H6/9uzZo/POO6/fdV1dXQqHw702AAAwMsUVIx0dHerp6ZHD4ei13+FwKBAI9HtcKBTSxIkTlZiYqKVLl+pf//VfddFFF/W73ufzyW63xzan0xnPmAAAYBgZkr+mmTRpkpqbm/XnP/9Z69atk9frVV1dXb/rS0pKFAqFYltra+tQjAkAAAwYE8/i1NRUJSQkKBgM9tofDAaVlpbW73FWq1UzZ86UJGVmZmrXrl3y+Xw6//zz+1xvs9lks9niGQ0AAAxTcV0ZSUxMVFZWlvx+f2xfJBKR3+9XXl7eMT9PJBJRV1dXPKcGAAAjVFxXRiTJ6/WqqKhI2dnZysnJUXl5uTo7O+XxeCRJhYWFSk9Pl8/nk/Tl/R/Z2dk644wz1NXVpe3bt+u3v/2tHnroocH9SQAAwLAUd4wUFBSovb1dpaWlCgQCyszMVG1tbeym1paWFlmthy64dHZ26tprr9UHH3ygcePGadasWXr88cdVUFAweD8FAAAYtuL+nBET+JwRM/icEQDA8TghnzMCAAAw2IgRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABg1IBipKKiQi6XS0lJScrNzVVDQ0O/azdt2qRzzz1Xp5xyik455RS53e4jrgcAAKNL3DFSU1Mjr9ersrIyNTU1KSMjQ/n5+Wpra+tzfV1dnS677DI9//zzqq+vl9Pp1MUXX6wPP/zwuIcHAADDnyUajUbjOSA3N1cLFy7Uxo0bJUmRSEROp1M33HCDVq9efdTje3p6dMopp2jjxo0qLCw8pnOGw2HZ7XaFQiElJyfHM+6gcK3eNuTnPBnsXb/U9AgAgGHsWH9/x3VlpLu7W42NjXK73YeewGqV2+1WfX39MT3H/v37dfDgQU2ePLnfNV1dXQqHw702AAAwMsUVIx0dHerp6ZHD4ei13+FwKBAIHNNz3HrrrZo+fXqvoPkqn88nu90e25xOZzxjAgCAYWRI/5pm/fr1qq6u1pNPPqmkpKR+15WUlCgUCsW21tbWIZwSAAAMpTHxLE5NTVVCQoKCwWCv/cFgUGlpaUc89r777tP69eu1Y8cOzZ8//4hrbTabbDZbPKMBAIBhKq4rI4mJicrKypLf74/ti0Qi8vv9ysvL6/e4X/ziF1q7dq1qa2uVnZ098GkBAMCIE9eVEUnyer0qKipSdna2cnJyVF5ers7OTnk8HklSYWGh0tPT5fP5JEn/8i//otLSUm3ZskUulyt2b8nEiRM1ceLEQfxRAADAcBR3jBQUFKi9vV2lpaUKBALKzMxUbW1t7KbWlpYWWa2HLrg89NBD6u7u1j/+4z/2ep6ysjLdeeedxzc9AAAY9uL+nBET+JwRM/icEQDA8TghnzMCAAAw2IgRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABg1IBipKKiQi6XS0lJScrNzVVDQ0O/a//617/qH/7hH+RyuWSxWFReXj7QWQEAwAgUd4zU1NTI6/WqrKxMTU1NysjIUH5+vtra2vpcv3//fp1++ulav3690tLSjntgAAAwssQdIxs2bFBxcbE8Ho/mzJmjyspKjR8/XlVVVX2uX7hwoe6991794Ac/kM1mO+6BAQDAyDImnsXd3d1qbGxUSUlJbJ/VapXb7VZ9ff2gDdXV1aWurq7YP4fD4UF7buBoXKu3mR7BiL3rl5oeAcAoFdeVkY6ODvX09MjhcPTa73A4FAgEBm0on88nu90e25xO56A9NwAAOLmclH9NU1JSolAoFNtaW1tNjwQAAE6QuN6mSU1NVUJCgoLBYK/9wWBwUG9Otdls3F8CAMAoEdeVkcTERGVlZcnv98f2RSIR+f1+5eXlDfpwAABg5Ivryogkeb1eFRUVKTs7Wzk5OSovL1dnZ6c8Ho8kqbCwUOnp6fL5fJK+vOn1zTffjP3rDz/8UM3NzZo4caJmzpw5iD8KAAAYjuKOkYKCArW3t6u0tFSBQECZmZmqra2N3dTa0tIiq/XQBZePPvpICxYsiP3zfffdp/vuu0+LFy9WXV3d8f8EAABgWIs7RiTp+uuv1/XXX9/nY18NDJfLpWg0OpDTAMAJx59yA+adlH9NAwAARg9iBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEaNMT0AAABDxbV6m+kRjNi7fqnpEY6IKyMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMCoAcVIRUWFXC6XkpKSlJubq4aGhiOu/8Mf/qBZs2YpKSlJ8+bN0/bt2wc0LAAAGHnijpGamhp5vV6VlZWpqalJGRkZys/PV1tbW5/rX375ZV122WW6+uqr9Ze//EUrVqzQihUrtHPnzuMeHgAADH9xx8iGDRtUXFwsj8ejOXPmqLKyUuPHj1dVVVWf63/1q19pyZIl+ulPf6rZs2dr7dq1Ovvss7Vx48bjHh4AAAx/cX1RXnd3txobG1VSUhLbZ7Va5Xa7VV9f3+cx9fX18nq9vfbl5+frqaee6vc8XV1d6urqiv1zKBSSJIXD4XjGHTSRrv1GzmuaqX+/TeP1Hl14vUcXXm8z541Go0dcF1eMdHR0qKenRw6Ho9d+h8Oh3bt393lMIBDoc30gEOj3PD6fT2vWrDlsv9PpjGdcHCd7uekJMJR4vUcXXu/RxfTrvW/fPtnt9n4fjytGhkpJSUmvqymRSESffPKJTj31VFksFoOTDa1wOCyn06nW1lYlJyebHgcnGK/36MLrPbqM1tc7Go1q3759mj59+hHXxRUjqampSkhIUDAY7LU/GAwqLS2tz2PS0tLiWi9JNptNNput176UlJR4Rh1RkpOTR9V/eEc7Xu/Rhdd7dBmNr/eRroj8TVw3sCYmJiorK0t+vz+2LxKJyO/3Ky8vr89j8vLyeq2XpOeee67f9QAAYHSJ+20ar9eroqIiZWdnKycnR+Xl5ers7JTH45EkFRYWKj09XT6fT5J00003afHixbr//vu1dOlSVVdX69VXX9Wvf/3rwf1JAADAsBR3jBQUFKi9vV2lpaUKBALKzMxUbW1t7CbVlpYWWa2HLrgsWrRIW7Zs0e23366f//zn+sY3vqGnnnpKc+fOHbyfYoSy2WwqKys77C0rjEy83qMLr/fowut9ZJbo0f7eBgAA4ATiu2kAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGHVSfhz8aNXR0aGqqirV19fHvrsnLS1NixYt0lVXXaUpU6YYnhAAgMHHlZGTxJ///GedeeaZeuCBB2S323XeeefpvPPOk91u1wMPPKBZs2bp1VdfNT0mhkhra6t++MMfmh4Dg+jAgQN66aWX9Oabbx722Oeff67HHnvMwFQ4UXbt2qVHHnkk9iWyu3fv1qpVq/TDH/5Q//Vf/2V4upMPnzNykvjmN7+pjIwMVVZWHvZlgNFoVD/60Y/0+uuvq76+3tCEGEqvvfaazj77bPX09JgeBYPgrbfe0sUXX6yWlhZZLBZ961vfUnV1taZNmybpy+/rmj59Oq/3CFFbW6vly5dr4sSJ2r9/v5588kkVFhYqIyNDkUhEL7zwgp599lldeOGFpkc9aRAjJ4lx48bpL3/5i2bNmtXn47t379aCBQt04MCBIZ4MJ8Kf/vSnIz7+3nvv6Sc/+Qm/nEaI7373uzp48KAeffRRffrpp7r55pv15ptvqq6uTjNmzCBGRphFixbpwgsv1N13363q6mpde+21WrVqldatWyfpy2+mb2xs1LPPPmt40pMHMXKS+PrXv641a9aosLCwz8cfe+wxlZaWau/evUM7GE4Iq9Uqi8WiI/3Xz2Kx8MtphHA4HNqxY4fmzZsn6curnddee622b9+u559/XhMmTCBGRhC73a7GxkbNnDlTkUhENptNDQ0NWrBggSRp586dcrvdsXsDwQ2sJ41bbrlF11xzjRobG/Xtb3879l0/wWBQfr9fmzZt0n333Wd4SgyWadOm6cEHH9Ty5cv7fLy5uVlZWVlDPBVOlAMHDmjMmEP/c2uxWPTQQw/p+uuv1+LFi7VlyxaD0+FE+Nvb7VarVUlJSbLb7bHHJk2apFAoZGq0kxIxcpK47rrrlJqaql/+8pd68MEHY/8PKSEhQVlZWXr00Uf1/e9/3/CUGCxZWVlqbGzsN0aOdtUEw8vfbkCfPXt2r/0bN26UJF1yySUmxsIJ4nK59Pbbb+uMM86QJNXX12vGjBmxx1taWmL3C+FLxMhJpKCgQAUFBTp48KA6OjokSampqRo7dqzhyTDYfvrTn6qzs7Pfx2fOnKnnn39+CCfCifTd735Xv//973XllVce9tjGjRsViURUWVlpYDKcCKtWrer1lttXv6X+6aef5ubVr+CeEQAAYBSfMwIAAIwiRgAAgFHECAAAMIoYAQAARhEjwChy/vnn6+abbz7iGpfLpfLy8iGZJx4Wi0VPPfWU6TEAnADECDBCXHXVVVqxYkWvfU888YSSkpJ0//33S5K2bt2qtWvXGpju5PXxxx/r8ssv15lnnimr1XrUWKuurpbFYjns32sAA0eMACPUww8/rCuuuEIPPfSQfvKTn0iSJk+erEmTJhmezIzu7u4+93d1dWnKlCm6/fbblZGRccTn2Lt3r2655Rade+65J2JEYNQiRoAR6Be/+IVuuOEGVVdXy+PxxPZ/9W2atrY2LVu2TOPGjdPXv/51/e53v+v1PNFoVHfeeadmzJghm82m6dOn68Ybb+z3vH1dnbn55pt1/vnn95rhxhtv1M9+9jNNnjxZaWlpuvPOO3sd8/bbb+u8885TUlKS5syZo+eee+6wc7W2tur73/++UlJSNHnyZC1fvrzXdzf9bZZ169Zp+vTpOuuss/qc2eVy6Ve/+pUKCwt7fWT3V/X09OiKK67QmjVrdPrpp/e7DkD8+ARWYIS59dZb9eCDD+o///M/9e1vf/uIa6+66ip99NFHev755zV27FjdeOONamtriz3+7//+7/rlL3+p6upq/d3f/Z0CgYBee+21457xN7/5jbxer1555RXV19frqquu0jnnnKOLLrpIkUhEl156qRwOh1555RWFQqHD3jo5ePCg8vPzlZeXpxdffFFjxozR3XffrSVLluj1119XYmKiJMnv9ys5ObnPmInXXXfdpalTp+rqq6/Wiy++eNzPB+AQYgQYQZ5++mn98Y9/lN/vP+rHTb/11lt6+umn1dDQoIULF0qSNm/e3Ov7U1paWpSWlia3262xY8dqxowZysnJOe4558+fr7KyMknSN77xDW3cuFF+v18XXXSRduzYod27d+uZZ57R9OnTJUn33HOP/v7v/z52fE1NjSKRiB5++OHYF5I98sgjSklJUV1dnS6++GJJ0oQJE/Twww/H4mSgXnrpJW3evFnNzc3H9TwA+sbbNMAIMn/+fLlcLpWVlemzzz474tpdu3ZpzJgxvb4deNasWUpJSYn98/e+9z0dOHBAp59+uoqLi/Xkk0/qiy++GJQ5/3/Tpk2LXZHZtWuXnE5nLEQkKS8vr9f61157Te+8844mTZqkiRMnauLEiZo8ebI+//xzvfvuu7F18+bNO+4Q2bdvn6688kpt2rRJqampx/VcAPrGlRFgBElPT9cTTzyhCy64QEuWLNHTTz99XDesOp1O7dmzRzt27NBzzz2na6+9Vvfee69eeOGFPr/A0Wq1HvZtwwcPHjxs3VePtVgsikQixzzXZ599pqysrMPucZGkKVOmxP71hAkTjvk5+/Puu+9q7969WrZsWWzf32YdM2aM9uzZE/t2VgADw5URYIQ57bTT9MILLygQCGjJkiXat29fn+tmzZqlL774Qo2NjbF9e/bs0aefftpr3bhx47Rs2TI98MADqqurU319vd54440+n3PKlCn6+OOPe+2L962N2bNnq7W1tdfz/M///E+vNWeffbbefvttTZ06VTNnzuy1Hekm1IGYNWuW3njjDTU3N8e2Sy65RBdccIGam5vldDoH9XzAaESMACOQ0+lUXV2d2tralJ+fr3A4fNias846S0uWLNE///M/65VXXlFjY6NWrlypcePGxdY8+uij2rx5s3bu3Kn33ntPjz/+uMaNG6fTTjutz/NeeOGFevXVV/XYY4/p7bffVllZmXbu3BnX7G63W2eeeaaKior02muv6cUXX9Rtt93Wa80VV1yh1NRULV++XC+++KL+93//V3V1dbrxxhv1wQcfxHU+SbHI+Oyzz9Te3q7m5ma9+eabkqSkpCTNnTu315aSkqJJkyZp7ty5x/02EABiBBixvva1r6murk4dHR39Bskjjzyi6dOna/Hixbr00kt1zTXXaOrUqbHHU1JStGnTJp1zzjmaP3++duzYof/4j//Qqaee2uc58/Pzdccdd+hnP/uZFi5cqH379qmwsDCuua1Wq5588kkdOHBAOTk5WrlypdatW9drzfjx4/Xf//3fmjFjhi699FLNnj1bV199tT7//HMlJyfHdT5JWrBggRYsWKDGxkZt2bJFCxYs0He+8524nwfAwFiiX32DFwAAYAhxZQQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYNT/A9+u252IbsJ6AAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# ----- WON'T BE TESTED -----\n",
"# the code below is beyond what will be tested and is provided for the purpose \n",
"# of demonstrating examples of visualizations that achieve different goals\n",
"\n",
"# You can \"unstack\" the index an create a better view to achieve different goals.\n",
"prov_kids14_dist_df = prov_data_df.groupby([\"Prov label\"])[\"Kids under 14\"].value_counts()\n",
"prov_kids14_dist_unstacked_df = prov_kids14_dist_df.unstack(level=1)\n",
"\n",
"# using \"df.plot.barh()\" to plot horizontal bars to compari proportions\n",
"prov_kids14_totals = prov_kids14_dist_unstacked_df.sum(axis=1)\n",
"prov_kids14_dist_unstacked_df[\"None\"] = prov_kids14_dist_unstacked_df[0] / prov_kids14_totals\n",
"prov_kids14_dist_unstacked_df[\"One\"] = prov_kids14_dist_unstacked_df[1] / prov_kids14_totals\n",
"prov_kids14_dist_unstacked_df[\"Two\"] = prov_kids14_dist_unstacked_df[2] / prov_kids14_totals\n",
"prov_kids14_dist_unstacked_df[\"Three or more\"] = prov_kids14_dist_unstacked_df[3] / prov_kids14_totals\n",
"\n",
"## comparing within provinces\n",
"prov_kids14_dist_unstacked_df[[\"None\", \"One\", \"Two\", \"Three or more\"]].plot.barh()\n",
"## comparing between provinces\n",
"prov_kids14_dist_unstacked_df[[\"None\", \"One\", \"Two\", \"Three or more\"]].plot.barh(stacked=True)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9UAAAPeCAYAAAACjTncAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjQElEQVR4nOzdeViU9f7/8deAMogIboBKKIqlqSmFS5qoFUWmmZVrqYRmlkt1qE5SHZf6drAss8zUPKmVmabHpVUzjpYmHk1PZW6ViZoFaikYKiR8fn/4Y3AElLllm/H5uK77uph7Pvc9n/tmXnPPe+7NZowxAgAAAAAALvOq6A4AAAAAAOCuKKoBAAAAALCIohoAAAAAAIsoqgEAAAAAsIiiGgAAAAAAiyiqAQAAAACwiKIaAAAAAACLKKoBAAAAALCIohoAAAAAAIsoqlEqunXrplatWlV0NwC3lZqaKpvNphdffLGiuyJJCg8PV8+ePSu6GwA8SP7n3Lx581yabsKECbLZbDpy5EjZdAwoBTabTRMmTHA85n17aaGo9iDbt2/XoEGDFBoaKrvdrgYNGmjQoEHasWNHRXcNcEvbtm1Tnz591KhRI/n6+io0NFQ33XSTpk2bVtFdu6ANGzZowoQJOnbsWEV3BShX8+bNk81mk6+vrw4ePFjo+cryI3C3bt1ks9kcg4+Pjxo3bqz7779fBw4cqOjuATjH66+/LpvNpg4dOlR0V4r0+uuvu/yDFUoPRbWHWLp0qa655holJycrPj5er7/+uoYNG6b//Oc/uuaaa7RixYqK7iLgVjZs2KC2bdvq22+/1fDhw/Xaa6/pvvvuk5eXl1555ZWK7t4FbdiwQRMnTqSoxiUrOztbkyZNquhunNdll12md955R++8845mzpypu+66SwsWLFDnzp114sSJiu5eqWvUqJFOnjypwYMHV3RXAJe9++67Cg8P16ZNm/TTTz9VdHcKoaiuWFUqugO4eHv27NHgwYPVpEkTffnllwoKCnI89/DDDys6OlqDBg3Sd999p8aNG1dgTwH38dxzzykwMFCbN29WzZo1nZ47dOhQxXQKQIlFRkZq9uzZSkxMVIMGDSq6O0UKDAzUoEGDnMY1btxYo0eP1ldffaWbbrqp2GmzsrJUvXr1su5iqco/ggBwN3v37tWGDRu0dOlSjRgxQu+++67Gjx9f0d2SJJ04cUJ+fn4V3Y1LHnuqPcDkyZN14sQJvfHGG04FtSTVrVtXs2bN0p9//qnJkydLku69916Fh4cXmk/+uR/nmj9/vqKiolStWjXVrl1bAwYMKPbQtC1btqhTp06qVq2aGjdurJkzZxZqk52drfHjx6tp06ay2+0KCwvT3//+d2VnZxf52u3bt5efn59q1aqlLl266LPPPivJagEuyp49e9SyZctCBbUkBQcHO/6eO3eubrjhBgUHB8tut6tFixaaMWNGoWm+/vprxcbGqm7duo58DB069Lx9MMbo/vvvl4+Pj5YuXSpJ+u6773TvvfeqSZMm8vX1Vb169TR06FD9/vvvjukmTJigxx9/XNKZL+j5h5empqY62pQ0W+vXr1f79u3l6+urJk2a6O233y7U5tixY3rkkUcUFhYmu92upk2b6vnnn1deXp6jzTXXXKM777zTabqrrrpKNptN3333nWPcokWLZLPZtHPnTknSvn37NHLkSDVr1kzVqlVTnTp11LdvX6dlkQoO+f3qq6+UkJCgoKAgVa9eXXfccYcOHz583vUMz/Tkk08qNze3xHurL7Ste/XVV+Xt7e109MdLL70km82mhIQEx7jc3FzVqFFDTzzxhKV+16tXT5JUpUrBfo/87fOOHTt09913q1atWurcubOkM4eRd+vWrdB8zt3Wn33dhjfeeEMRERGy2+1q166dNm/e7DRtWlqa4uPjddlll8lut6t+/fq6/fbbHblLSEhQnTp1ZIxxTDNmzBjZbDa9+uqrjnHp6emy2WyOz8TizqnetWuX+vXrp6CgIFWrVk3NmjXTU089dd71tG/fPjVt2lStWrVSenr6edsCF+vdd99VrVq11KNHD/Xp00fvvvtuiac9cuSI+vXrp4CAANWpU0cPP/ywTp06VahdSb5v55++smXLFnXp0kV+fn568sknFR4eru3bt+uLL75wbPPzPxf++OMPPfbYY7rqqqvk7++vgIAAde/eXd9+++1FrRM4Y0+1B/jwww8VHh6u6OjoIp/v0qWLwsPD9eGHH+r11193ad7PPfec/vGPf6hfv3667777dPjwYU2bNk1dunTR//73P6eC4+jRo7r11lvVr18/DRw4UO+//74efPBB+fj4OIqHvLw89erVS+vXr9f999+vK6+8Utu2bdPLL7+sH374QcuXL3fMb+LEiZowYYI6deqkZ555Rj4+Pvrvf/+r//znP7r55ptdXk+AKxo1aqSUlBR9//335z3/csaMGWrZsqV69eqlKlWq6MMPP9TIkSOVl5enUaNGSTqzZ/vmm29WUFCQxo4dq5o1ayo1NdVRKBclNzdXQ4cO1aJFi7Rs2TL16NFDkrR69Wr9/PPPio+PV7169bR9+3a98cYb2r59uzZu3CibzaY777xTP/zwg9577z29/PLLqlu3riQ5fnQrabZ++ukn9enTR8OGDVNcXJzmzJmje++9V1FRUWrZsqWkM7+Qd+3aVQcPHtSIESPUsGFDbdiwQYmJifrtt980depUSVJ0dLTee+89x7z/+OMPbd++XV5eXlq3bp1at24tSVq3bp2CgoJ05ZVXSpI2b96sDRs2aMCAAbrsssuUmpqqGTNmqFu3btqxY0ehX+fHjBmjWrVqafz48UpNTdXUqVM1evRoLVq06ML/dHiUxo0ba8iQIZo9e7bGjh173r3VJdnWRUdHKy8vT+vXr3dcxG/dunWO93C+//3vf/rzzz/VpUuXC/YxNzfXcRGjv/76Szt37nT86HzdddcVat+3b19dfvnl+uc//+lU0LpiwYIFOn78uEaMGCGbzaYXXnhBd955p37++WdVrVpVknTXXXdp+/btGjNmjMLDw3Xo0CGtXr1a+/fvd3zfePnll7V9+3bH5+PZ6+Khhx5yjJN03nXx3XffKTo6WlWrVtX999+v8PBw7dmzRx9++KGee+65IqfZs2ePbrjhBtWuXVurV692fMYBZeXdd9/VnXfeKR8fHw0cOFAzZszQ5s2b1a5duwtO269fP4WHhyspKUkbN27Uq6++qqNHjzr9SO3K9+3ff/9d3bt314ABAzRo0CCFhISoW7duGjNmjPz9/R0/SIWEhEiSfv75Zy1fvlx9+/ZV48aNlZ6erlmzZqlr167asWNHpT2Sx+0YuLVjx44ZSeb2228/b7tevXoZSSYzM9PExcWZRo0aFWozfvx4c/ZbIjU11Xh7e5vnnnvOqd22bdtMlSpVnMZ37drVSDIvvfSSY1x2draJjIw0wcHBJicnxxhjzDvvvGO8vLzMunXrnOY5c+ZMI8l89dVXxhhjfvzxR+Pl5WXuuOMOk5ub69Q2Ly/vvMsKlIbPPvvMeHt7G29vb9OxY0fz97//3axatcrxXs534sSJQtPGxsaaJk2aOB4vW7bMSDKbN28u9vX27t1rJJnJkyebv/76y/Tv399Uq1bNrFq16oKv99577xlJ5ssvv3SMmzx5spFk9u7d69S2pNlq1KhRoXkeOnTI2O128+ijjzrGPfvss6Z69ermhx9+cJrX2LFjjbe3t9m/f78xxpjFixcbSWbHjh3GGGM++OADY7fbTa9evUz//v0d07Vu3drccccd513elJQUI8m8/fbbjnFz5841kkxMTIzTcvztb38z3t7e5tixY4XmA8+U/17YvHmz2bNnj6lSpYp56KGHHM937drVtGzZ0vG4pNu63NxcExAQYP7+978bY87kpU6dOqZv377G29vbHD9+3BhjzJQpU4yXl5c5evToefuZv908d7jyyivNzz//7NQ2f/s8cODAIufTtWvXQuPP3dbnf8bUqVPH/PHHH47xK1asMJLMhx9+aIwx5ujRo47PouIcOnTISDKvv/66MebMdxEvLy/Tt29fExIS4mj30EMPmdq1azsymd+HuXPnOtp06dLF1KhRw+zbt8/pNc7Ocf7yHz582OzcudM0aNDAtGvXzmk5gLLy9ddfG0lm9erVxpgz783LLrvMPPzww07tJJnx48c7Hue/b3v16uXUbuTIkUaS+fbbb40x1r5vz5w5s1A/W7ZsWeRnwalTpwpt7/fu3Wvsdrt55plnLrj8KBkO/3Zzx48flyTVqFHjvO3yn89vXxJLly5VXl6e+vXrpyNHjjiGevXq6fLLL9eaNWuc2lepUkUjRoxwPPbx8dGIESN06NAhbdmyRZK0ePFiXXnllWrevLnTPG+44QZJcsxz+fLlysvL07hx4+Tl5fw2LeoQdaC03XTTTUpJSVGvXr307bff6oUXXlBsbKxCQ0P1wQcfONpVq1bN8XdGRoaOHDmirl276ueff1ZGRoYkOX5h/uijj/TXX3+d93VzcnLUt29fffTRR/rkk08KHZVx9uudOnVKR44c0bXXXitJ2rp16wWXy5VstWjRwukImKCgIDVr1kw///yzY9zixYsVHR2tWrVqOWU6JiZGubm5+vLLLyXJMZ/8x+vWrVO7du100003OfZmHTt2TN9//73Ta569vH/99Zd+//13NW3aVDVr1ixyee+//36n5YiOjlZubq727dt3wXUDz9OkSRMNHjxYb7zxhn777bci25R0W+fl5aVOnTo53sM7d+7U77//rrFjx8oYo5SUFEln3tutWrUq8tSRc4WHh2v16tVavXq1Pv30U02dOlUZGRnq3r17kactPPDAAxbXRIH+/furVq1ajsf5ecvPdbVq1eTj46O1a9fq6NGjRc4jKChIzZs3d6yLr776St7e3nr88ceVnp6uH3/8UdKZddG5c+dit9uHDx/Wl19+qaFDh6phw4ZOzxU1zffff6+uXbsqPDxcn3/+udNyAGXl3XffVUhIiK6//npJZ96b/fv318KFC5Wbm3vB6fOPWss3ZswYSdInn3wiyfXv23a7XfHx8SXuv91ud2zvc3Nz9fvvv8vf31/NmjUr0fcGlAxFtZsrabF8/Phx2Ww2lw6R+vHHH2WM0eWXX66goCCnYefOnYUu1tSgQYNCF0254oorJMlxHtaPP/6o7du3F5pffrv8ee7Zs0deXl5q0aJFifsLlLZ27dpp6dKlOnr0qDZt2qTExEQdP35cffr0cdyq7quvvlJMTIyqV6+umjVrKigoSE8++aQkOYrqrl276q677tLEiRNVt25d3X777Zo7d26R1xFISkrS8uXLtWTJkiLPk/zjjz/08MMPKyQkRNWqVVNQUJDjAoT5r3c+rmTr3C+5klSrVi2nL9o//vijVq5cWSjTMTExkgoyHRISossvv9xRQK9bt07R0dHq0qWLfv31V/3888/66quvlJeX51RUnzx5UuPGjXOcr123bl0FBQXp2LFjRS7vuX3O/9JdXHEAz/f000/r9OnTxZ5b7cq2Ljo6Wlu2bNHJkye1bt061a9fX9dcc43atGnjeG+vX7++2NOxzlW9enXFxMQoJiZGt9xyix5++GF98MEH2r17d5H9LY2LjV4oI3a7Xc8//7w+/fRThYSEqEuXLnrhhReUlpbmNF10dLRTntu2bau2bduqdu3aWrdunTIzM/Xtt9+ed13kF/IlvcXZbbfdpho1amjVqlUKCAgo2QIDFyE3N1cLFy7U9ddfr7179+qnn37STz/9pA4dOig9PV3JyckXnMfll1/u9DgiIkJeXl5O341d+b4dGhoqHx+fEi9DXl6eXn75ZV1++eVO29HvvvuuRN8bUDKcU+3mAgMD1aBBA6cL/RTlu+++02WXXSYfH59ifzE+99e2vLw82Ww2ffrpp/L29i7U3t/f3+X+5uXl6aqrrtKUKVOKfD4sLMzleQJlzcfHR+3atVO7du10xRVXKD4+XosXL9agQYN04403qnnz5poyZYrCwsLk4+OjTz75RC+//LLjQl02m01LlizRxo0b9eGHH2rVqlUaOnSoXnrpJW3cuNEpS7GxsVq5cqVeeOEFdevWrdCVcvv166cNGzbo8ccfV2RkpPz9/ZWXl6dbbrnF6cJgpaGo3EtyOpczLy9PN910k/7+978X2Tb/BzNJ6ty5s5KTk3Xy5Elt2bJF48aNc+zRW7dunXbu3Cl/f39dffXVjmnGjBmjuXPn6pFHHlHHjh0VGBgom82mAQMGFLm8JekzLi1NmjTRoEGD9MYbb2js2LGFnndlW9e5c2f99ddfSklJcfwwJBUUmLt27dLhw4dLXFQXJSoqSoGBgY69wGc7+8iNfDabrcj3d3F70EqSkUceeUS33Xabli9frlWrVukf//iHkpKS9J///MeRz86dO2v27Nn6+eefHevCZrOpc+fOWrdunRo0aFDoR7KLddddd+mtt97Su+++63RkHFBW/vOf/+i3337TwoULtXDhwkLPv/vuuy5f5+fc7+Guft8u6nPgfP75z3/qH//4h4YOHapnn31WtWvXlpeXlx555JFS/95wKaOo9gC33XabZs2apfXr1zuuBnq2devWKTU11XF10lq1ahV579pzD4+MiIiQMUaNGzd2+mJcnF9//bXQLT5++OEHSXJcgTQiIkLffvutbrzxxvMexh0REaG8vDzt2LFDkZGRF3xtoLy0bdtWkvTbb7/pww8/VHZ2tj744AOnvT/nHqqV79prr9W1116r5557TgsWLNA999yjhQsX6r777nNq88ADD6hnz57q27evli1b5rgK8NGjR5WcnKyJEydq3LhxjmnyD7U8W3H5Ku1sRURE6M8//3TsmT6f6OhozZ0713HIXKdOneTl5eX4Er5z50516tTJ6UvFkiVLFBcXp5deeskx7tSpU9x/Gy55+umnNX/+fD3//POFnnNlW9e+fXv5+Pho3bp1WrduneMq+126dNHs2bMde61KcpGy88nNzdWff/5Zora1atVyOiUj38We8hAREaFHH31Ujz76qH788UdFRkbqpZde0vz58yUVHDa+evVqbd682fGDRZcuXTRjxgzH0WtRUVHFvkaTJk0knTmsuyQmT56sKlWqaOTIkapRo4buvvvui1lE4ILeffddBQcHa/r06YWeW7p0qZYtW6aZM2eet9D98ccfnY4y+emnn5SXl+f03diV79vFKW67v2TJEl1//fV68803ncYfO3aMi/yVIg7/9gCPPfaY/Pz8NGLECKfb6khnDhV94IEHFBAQoNGjR0s6E96MjAynvdu//fabli1b5jTtnXfeKW9vb02cOLHQr+DGmEKvdfr0ac2aNcvxOCcnR7NmzVJQUJBjo9qvXz8dPHhQs2fPLrQcJ0+eVFZWliSpd+/e8vLy0jPPPFPoVzT2OKE8rFmzpsj3Wv45UM2aNXMUf2e3y8jI0Ny5c52mOXr0aKF55Re0RR0CHhMTo4ULF2rlypUaPHiwIwNFvZ4kxxW2z5b/49a5xWdpZ6tfv35KSUnRqlWrCj137NgxnT592vE4/0v4888/r9atWyswMNAxPjk5WV9//XWhvVre3t6F+jVt2rQSnccG5IuIiNCgQYM0a9asQocxu7Kt8/X1Vbt27fTee+9p//79TnuqT548qVdffVURERGqX7++5b6uWbNGf/75p9q0aVPiZcvfQ57v22+/1VdffWXp9U+cOFHodj8RERGqUaOG0+dV48aNFRoaqpdffll//fWX42rl0dHR2rNnj5YsWaJrr73W6dZg5woKClKXLl00Z84c7d+/3+m5oj6PbDab3njjDfXp00dxcXFO17cAStvJkye1dOlS9ezZU3369Ck0jB49WsePH7/g+/DcgnzatGmSpO7du0ty/ft2capXr17kD85FbUcXL16sgwcPlmi+KBn2VHuApk2b6u2339bAgQN11VVXadiwYWrcuLFSU1P15ptv6ujRo1q4cKHjV7IBAwboiSee0B133KGHHnpIJ06c0IwZM3TFFVc4XbAgIiJC//d//6fExESlpqaqd+/eqlGjhvbu3atly5bp/vvv12OPPeZo36BBAz3//PNKTU3VFVdcoUWLFumbb77RG2+84bhNx+DBg/X+++/rgQce0Jo1a3TdddcpNzdXu3bt0vvvv69Vq1apbdu2atq0qZ566ik9++yzio6O1p133im73a7NmzerQYMGSkpKKt+VjEvOmDFjdOLECd1xxx1q3ry5cnJytGHDBi1atEjh4eGKj49Xenq6fHx8dNttt2nEiBH6888/NXv2bAUHBztdFOmtt97S66+/rjvuuEMRERE6fvy4Zs+erYCAAN16661Fvn7v3r01d+5cDRkyRAEBAZo1a5YCAgIc5zf+9ddfCg0N1Weffaa9e/cWmj7/h6ynnnpKAwYMUNWqVXXbbbeVerYef/xxffDBB+rZs6fjdltZWVnatm2blixZotTUVMcv4U2bNlW9evW0e/dux4VapDN7tvLv6XtuUd2zZ0+98847CgwMVIsWLZSSkqLPP/9cderUcamfwFNPPaV33nlHu3fvdtwSTnJ9WxcdHa1JkyYpMDBQV111laQz965v1qyZdu/erXvvvbfEfcrIyHDs+T19+rR2796tGTNmqFq1akUeql6UoUOHasqUKYqNjdWwYcN06NAhzZw5Uy1btlRmZmaJ+5Lvhx9+0I033qh+/fqpRYsWqlKlipYtW6b09HQNGDDAqW10dLQWLlyoq666ynFu9jXXXKPq1avrhx9+KNGe5FdffVWdO3fWNddco/vvv9/x/eXjjz/WN998U6i9l5eX5s+fr969e6tfv3765JNPHBc7BUrTBx98oOPHj6tXr15FPn/ttdcqKChI7777rvr371/sfPbu3atevXrplltuUUpKiubPn6+7777b8cOZq59BxYmKitKMGTP0f//3f2ratKmCg4N1ww03qGfPnnrmmWcUHx+vTp06adu2bXr33XcdR4qglJTXZcZR9rZt22buvvtuU69ePePl5WUkGV9fX7N9+/ZCbT/77DPTqlUr4+PjY5o1a2bmz59f6JZa+f7973+bzp07m+rVq5vq1aub5s2bm1GjRpndu3c72uTfouTrr782HTt2NL6+vqZRo0bmtddeKzS/nJwc8/zzz5uWLVsau91uatWqZaKioszEiRNNRkaGU9s5c+aYq6++2tGua9eujlsaAGXp008/NUOHDjXNmzc3/v7+xsfHxzRt2tSMGTPGpKenO9p98MEHpnXr1sbX19eEh4eb559/3syZM8fpdlZbt241AwcONA0bNjR2u90EBwebnj17mq+//toxn7NvqXW2119/3Ugyjz32mDHGmF9++cXccccdpmbNmiYwMND07dvX/Prrr4Vu5WHMmdtdhYaGOj4Pzr691oWy1ahRI9OjR49C66Wo2/ccP37cJCYmmqZNmxofHx9Tt25d06lTJ/Piiy8WugVZ3759jSSzaNEix7icnBzj5+dnfHx8zMmTJ53aHz161MTHx5u6desaf39/Exsba3bt2mUaNWpk4uLiHO3Ovo3S2dasWWMkmTVr1hRaFnim4t4Lxpy5zZQkp1tq5SvJts4YYz7++GMjyXTv3t1p/H333WckmTfffLNE/Tz3llo2m83Url3b9OrVy2zZssWp7dm3lCrK/PnzTZMmTYyPj4+JjIw0q1atKvaWWkXdKuvsz48jR46YUaNGmebNm5vq1aubwMBA06FDB/P+++8Xmm769OlGknnwwQedxsfExBhJJjk52Wl8UbfUMsaY77//3vG55uvra5o1a2b+8Y9/nHf5T5w4Ybp27Wr8/f3Nxo0bi1wvwMW47bbbjK+vr8nKyiq2zb333muqVq1qjhw5UuwttXbs2GH69OljatSoYWrVqmVGjx5daFtnjGvft4uSlpZmevToYWrUqGEkObbVp06dMo8++qipX7++qVatmrnuuutMSkpKsbfjgzU2YziW1lO9/fbbuvfeezVo0CCnG8wDAAAAAEoHh397sCFDhui3337T2LFjddlll+mf//xnRXcJAAAAADwKe6oBAAAAALCIq38DAAAAAGCRpaJ6+vTpCg8Pl6+vrzp06KBNmzadt/2xY8c0atQo1a9fX3a7XVdccYXjtjQAKgY5BjwDWQY8A1kG3JfL51QvWrRICQkJmjlzpjp06KCpU6cqNjZWu3fvVnBwcKH2OTk5uummmxQcHKwlS5YoNDRU+/btU82aNUuj/wAsIMeAZyDLgGcgy4B7c/mc6g4dOqhdu3Z67bXXJEl5eXkKCwvTmDFjiryn4syZMzV58mTt2rXLca9iABWLHAOegSwDnoEsA+7NpaI6JydHfn5+WrJkiXr37u0YHxcXp2PHjmnFihWFprn11ltVu3Zt+fn5acWKFQoKCtLdd9+tJ554Qt7e3kW+TnZ2trKzsx2P8/Ly9Mcff6hOnTqy2WwuLB5w6TDG6Pjx42rQoIG8vIo/s4McA5UbWQbcX0lzLJFloDIrcZZduan1wYMHjSSzYcMGp/GPP/64ad++fZHTNGvWzNjtdjN06FDz9ddfm4ULF5ratWubCRMmFPs6+TdLZ2BgcH04cOAAOWZg8ICBLDMwuP9woRyTZQYG9xgulOUyv091Xl6egoOD9cYbb8jb21tRUVE6ePCgJk+erPHjxxc5TWJiohISEhyPMzIy1LBhQx04cEABAQFl3WXALWVmZiosLEw1atQo9XmTY6D8kGXA/ZVljiWyDJSXkmbZpaK6bt268vb2Vnp6utP49PR01atXr8hp6tevr6pVqzodinLllVcqLS1NOTk58vHxKTSN3W6X3W4vND4gIIDQAxdwoUO4yDHgHsgy4P5Kclg1WQYqvwtl2aVbavn4+CgqKkrJycmOcXl5eUpOTlbHjh2LnOa6667TTz/9pLy8PMe4H374QfXr1y8y8ADKFjkGPANZBjwDWQbcn8v3qU5ISNDs2bP11ltvaefOnXrwwQeVlZWl+Ph4SdKQIUOUmJjoaP/ggw/qjz/+0MMPP6wffvhBH3/8sf75z39q1KhRpbcUAFxCjgHPQJYBz0CWAffm8jnV/fv31+HDhzVu3DilpaUpMjJSK1euVEhIiCRp//79TldGCwsL06pVq/S3v/1NrVu3VmhoqB5++GE98cQTpbcUAFxCjgHPQJYBz0CWAffm8n2qK0JmZqYCAwOVkZHBOR9AMSp7Tip7/4DKorJnpbL3D6gM3CEn7tBHoKKVNCcuH/4NAAAAAADOoKgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCJLRfX06dMVHh4uX19fdejQQZs2bSq27bx582Sz2ZwGX19fyx0GUHrIMuD+yDHgGcgy4L5cLqoXLVqkhIQEjR8/Xlu3blWbNm0UGxurQ4cOFTtNQECAfvvtN8ewb9++i+o0gItHlgH3R44Bz0CWAffmclE9ZcoUDR8+XPHx8WrRooVmzpwpPz8/zZkzp9hpbDab6tWr5xhCQkIuqtMALh5ZBtwfOQY8A1kG3JtLRXVOTo62bNmimJiYghl4eSkmJkYpKSnFTvfnn3+qUaNGCgsL0+23367t27db7zGAi0aWAfdHjgHPQJYB9+dSUX3kyBHl5uYW+iUsJCREaWlpRU7TrFkzzZkzRytWrND8+fOVl5enTp066Zdffin2dbKzs5WZmek0ACg95ZFlcgyULbbJgGcgy4D7K/Orf3fs2FFDhgxRZGSkunbtqqVLlyooKEizZs0qdpqkpCQFBgY6hrCwsLLuJoALcDXL5BiofNgmA56BLAOVi0tFdd26deXt7a309HSn8enp6apXr16J5lG1alVdffXV+umnn4ptk5iYqIyMDMdw4MABV7oJ4ALKI8vkGChbbJMBz0CWAffnUlHt4+OjqKgoJScnO8bl5eUpOTlZHTt2LNE8cnNztW3bNtWvX7/YNna7XQEBAU4DgNJTHlkmx0DZYpsMeAayDLi/Kq5OkJCQoLi4OLVt21bt27fX1KlTlZWVpfj4eEnSkCFDFBoaqqSkJEnSM888o2uvvVZNmzbVsWPHNHnyZO3bt0/33Xdf6S4JAJeQZcD9kWPAM5BlwL25XFT3799fhw8f1rhx45SWlqbIyEitXLnScXGF/fv3y8urYAf40aNHNXz4cKWlpalWrVqKiorShg0b1KJFi9JbCgAuI8uA+yPHgGcgy4B7sxljTEV34kIyMzMVGBiojIwMDlUBilHZc1LZ+wdUFpU9K5W9f0Bl4A45cYc+AhWtpDkp86t/AwAAAADgqSiqAQAAAACwiKIaAAAAAACLKKoBAAAAALCIohoAAAAAAIsoqgEAAAAAsIiiGgAAAAAAiyiqAQAAAACwiKIaAAAAAACLKKoBAAAAALCIohoAAAAAAIsoqgEAAAAAsIiiGgAAAAAAiyiqAQAAAACwiKIaAAAAAACLKKoBAAAAALCIohoAAAAAAIsoqgEAAAAAsIiiGgAAAAAAiyiqAQAAAACwiKIaAAAAAACLKKoBAAAAALCIohoAAAAAAIsoqgEAAAAAsIiiGgAAAAAAi6pUdAcAAAAuZeFjP67oLkiSUif1qOguAIBboqgGAAAA4DJ+EALOoKi+RPEhCAAAAAAXj3OqAQAAAACwiD3VAACg3FWGI6Y4WgoAUBooqgG4lcrwRVziyzgAAADOuKSK6srwZZwv4gAAAADgOTinGgAAAAAAiyiqAQAAAACwyFJRPX36dIWHh8vX11cdOnTQpk2bSjTdwoULZbPZ1Lt3bysvC6CUkWXA/ZFjwDOQZcB9uXxO9aJFi5SQkKCZM2eqQ4cOmjp1qmJjY7V7924FBwcXO11qaqoee+wxRUdHX1SHAZQOsgy4P3IMeAay7Bm4ftOly+U91VOmTNHw4cMVHx+vFi1aaObMmfLz89OcOXOKnSY3N1f33HOPJk6cqCZNmlxUhwGUDrIMuD9yDHgGsgy4N5eK6pycHG3ZskUxMTEFM/DyUkxMjFJSUoqd7plnnlFwcLCGDRtmvacASg1ZBtwfOQY8A1kG3J9Lh38fOXJEubm5CgkJcRofEhKiXbt2FTnN+vXr9eabb+qbb74p8etkZ2crOzvb8TgzM9OVbgK4gPLIMjkGyhbbZMAzkGXA/ZXp1b+PHz+uwYMHa/bs2apbt26Jp0tKSlJgYKBjCAsLK8NeArgQK1kmx0DlwjYZ8AxkGah8XNpTXbduXXl7eys9Pd1pfHp6uurVq1eo/Z49e5SamqrbbrvNMS4vL+/MC1epot27dysiIqLQdImJiUpISHA8zszMJPhAKSqPLJNjoGyxTQY8A1kG3J9LRbWPj4+ioqKUnJzsuGx/Xl6ekpOTNXr06ELtmzdvrm3btjmNe/rpp3X8+HG98sorxQbZbrfLbre70jUALiiPLJNjoGyxTQY8A1kG3J/Lt9RKSEhQXFyc2rZtq/bt22vq1KnKyspSfHy8JGnIkCEKDQ1VUlKSfH191apVK6fpa9asKUmFxgMoX2QZcH/kGPAMZBlwby4X1f3799fhw4c1btw4paWlKTIyUitXrnRcXGH//v3y8irTU7UBlAKyDLg/cgx4BrIMuDeXi2pJGj16dJGHo0jS2rVrzzvtvHnzrLwkgDJAlgH3R44Bz0CWAffFT14AAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFlm6pBQCoHMLHflzRXVDqpB4V3QUAAIAKw55qAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCJLRfX06dMVHh4uX19fdejQQZs2bSq27dKlS9W2bVvVrFlT1atXV2RkpN555x3LHQZQesgy4P7IMeAZyDLgvlwuqhctWqSEhASNHz9eW7duVZs2bRQbG6tDhw4V2b527dp66qmnlJKSou+++07x8fGKj4/XqlWrLrrzAKwjy4D7I8eAZyDLgHtzuaieMmWKhg8frvj4eLVo0UIzZ86Un5+f5syZU2T7bt266Y477tCVV16piIgIPfzww2rdurXWr19/0Z0HYB1ZBtwfOQY8A1kG3JtLRXVOTo62bNmimJiYghl4eSkmJkYpKSkXnN4Yo+TkZO3evVtdunQptl12drYyMzOdBgClpzyyTI6BssU2GfAMZBlwfy4V1UeOHFFubq5CQkKcxoeEhCgtLa3Y6TIyMuTv7y8fHx/16NFD06ZN00033VRs+6SkJAUGBjqGsLAwV7oJ4ALKI8vkGChbbJMBz0CWAfdXLlf/rlGjhr755htt3rxZzz33nBISErR27dpi2ycmJiojI8MxHDhwoDy6CeACXMkyOQYqJ7bJgGcgy0DlUcWVxnXr1pW3t7fS09Odxqenp6tevXrFTufl5aWmTZtKkiIjI7Vz504lJSWpW7duRba32+2y2+2udA2AC8ojy+QYKFtskwHPQJYB9+fSnmofHx9FRUUpOTnZMS4vL0/Jycnq2LFjieeTl5en7OxsV14aQCkiy4D7I8eAZyDLgPtzaU+1JCUkJCguLk5t27ZV+/btNXXqVGVlZSk+Pl6SNGTIEIWGhiopKUnSmfM32rZtq4iICGVnZ+uTTz7RO++8oxkzZpTukgBwCVkG3B85BjwDWQbcm8tFdf/+/XX48GGNGzdOaWlpioyM1MqVKx0XV9i/f7+8vAp2gGdlZWnkyJH65ZdfVK1aNTVv3lzz589X//79S28pALiMLAPujxwDnoEsA+7NZowxFd2JC8nMzFRgYKAyMjIUEBBgeT7hYz8uxV5ZkzqpR0V3QVLlWBdS5VkfnqC0clJWPCnHUuV571aG9VFZ1oWnIMvlp7K8dyvDupAqz/rwBJU9x1Lp9JH3rrPKsD4qy7rwFCXNSblc/RsAAAAAAE9EUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARZaK6unTpys8PFy+vr7q0KGDNm3aVGzb2bNnKzo6WrVq1VKtWrUUExNz3vYAyg9ZBtwfOQY8A1kG3FcVVydYtGiREhISNHPmTHXo0EFTp05VbGysdu/ereDg4ELt165dq4EDB6pTp07y9fXV888/r5tvvlnbt29XaGhoqSwEANeRZXia8LEfV3QXJEmpk3qU22uRY8AzkGXAvbm8p3rKlCkaPny44uPj1aJFC82cOVN+fn6aM2dOke3fffddjRw5UpGRkWrevLn+9a9/KS8vT8nJyRfdeQDWkWXA/ZFjwDOQZcC9uVRU5+TkaMuWLYqJiSmYgZeXYmJilJKSUqJ5nDhxQn/99Zdq165dbJvs7GxlZmY6DQBKT3lkmRwDZYttMuAZyDLg/lwqqo8cOaLc3FyFhIQ4jQ8JCVFaWlqJ5vHEE0+oQYMGTh8c50pKSlJgYKBjCAsLc6WbAC6gPLJMjoGyxTYZ8AxkGXB/5Xr170mTJmnhwoVatmyZfH19i22XmJiojIwMx3DgwIFy7CWACylJlskxULmxTQY8A1kGKp5LFyqrW7euvL29lZ6e7jQ+PT1d9erVO++0L774oiZNmqTPP/9crVu3Pm9bu90uu93uStcAuKA8skyOgbLFNhnwDGQZcH8u7an28fFRVFSU00UQ8i+K0LFjx2Kne+GFF/Tss89q5cqVatu2rfXeAigVZBlwf+QY8AxkGXB/Lt9SKyEhQXFxcWrbtq3at2+vqVOnKisrS/Hx8ZKkIUOGKDQ0VElJSZKk559/XuPGjdOCBQsUHh7uODfE399f/v7+pbgoAFxBlgH3R44Bz0CWAffmclHdv39/HT58WOPGjVNaWpoiIyO1cuVKx8UV9u/fLy+vgh3gM2bMUE5Ojvr06eM0n/Hjx2vChAkX13sAlpFlwP2RY8AzkGXAvblcVEvS6NGjNXr06CKfW7t2rdPj1NRUKy8BoByQZcD9kWPAM5BlwH2V69W/AQAAAADwJBTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhUpaI7AAAAAADwHOFjP67oLkiSUif1KJfXYU81AAAAAAAWUVQDAAAAAGARh3/jknepHZ4CAAAAoPSwpxoAAAAAAIsoqgEAAAAAsIiiGgAAAAAAizinGgAAAJVGZbjWCdc5AeAK9lQDAAAAAGARRTUAAAAAABZRVAMAAAAAYBFFNQAAAAAAFlFUAwAAAABgEUU1AAAAAAAWUVQDAAAAAGARRTUAAAAAABZRVAMAAAAAYBFFNQAAAAAAFlFUAwAAAABgEUU1AAAAAAAWUVQDAAAAAGARRTUAAAAAABZRVAMAAAAAYBFFNQAAAAAAFlkqqqdPn67w8HD5+vqqQ4cO2rRpU7Ftt2/frrvuukvh4eGy2WyaOnWq1b4CKEXkGPAMZBnwDGQZcF8uF9WLFi1SQkKCxo8fr61bt6pNmzaKjY3VoUOHimx/4sQJNWnSRJMmTVK9evUuusMALh45BjwDWQY8A1kG3JvLRfWUKVM0fPhwxcfHq0WLFpo5c6b8/Pw0Z86cItu3a9dOkydP1oABA2S32y+6wwAuHjkGPANZBjwDWQbcm0tFdU5OjrZs2aKYmJiCGXh5KSYmRikpKaXeOQCljxwDnoEsA56BLAPur4orjY8cOaLc3FyFhIQ4jQ8JCdGuXbtKrVPZ2dnKzs52PM7MzCy1eQOXOnIMeAayDHgGsgy4v0p59e+kpCQFBgY6hrCwsIruEgAXkWPAM5BlwDOQZaDsuFRU161bV97e3kpPT3can56eXqoXSUhMTFRGRoZjOHDgQKnNG7jUkWPAM5BlwDOQZcD9uVRU+/j4KCoqSsnJyY5xeXl5Sk5OVseOHUutU3a7XQEBAU4DgNJBjgHPQJYBz0CWAffn0jnVkpSQkKC4uDi1bdtW7du319SpU5WVlaX4+HhJ0pAhQxQaGqqkpCRJZy6+sGPHDsffBw8e1DfffCN/f381bdq0FBcFQEmRY8AzkGXAM5BlwL25XFT3799fhw8f1rhx45SWlqbIyEitXLnScXGF/fv3y8urYAf4r7/+qquvvtrx+MUXX9SLL76orl27au3atRe/BABcRo4Bz0CWAc9AlgH35nJRLUmjR4/W6NGji3zu3CCHh4fLGGPlZQCUIXIMeAayDHgGsgy4r0p59W8AAAAAANwBRTUAAAAAABZRVAMAAAAAYBFFNQAAAAAAFlFUAwAAAABgEUU1AAAAAAAWUVQDAAAAAGARRTUAAAAAABZRVAMAAAAAYBFFNQAAAAAAFlFUAwAAAABgEUU1AAAAAAAWUVQDAAAAAGARRTUAAAAAABZRVAMAAAAAYBFFNQAAAAAAFlFUAwAAAABgEUU1AAAAAAAWUVQDAAAAAGARRTUAAAAAABZRVAMAAAAAYBFFNQAAAAAAFlFUAwAAAABgEUU1AAAAAAAWUVQDAAAAAGARRTUAAAAAABZRVAMAAAAAYBFFNQAAAAAAFlFUAwAAAABgEUU1AAAAAAAWUVQDAAAAAGARRTUAAAAAABZRVAMAAAAAYBFFNQAAAAAAFlFUAwAAAABgkaWievr06QoPD5evr686dOigTZs2nbf94sWL1bx5c/n6+uqqq67SJ598YqmzAEoXWQbcHzkGPANZBtyXy0X1okWLlJCQoPHjx2vr1q1q06aNYmNjdejQoSLbb9iwQQMHDtSwYcP0v//9T71791bv3r31/fffX3TnAVhHlgH3R44Bz0CWAffmclE9ZcoUDR8+XPHx8WrRooVmzpwpPz8/zZkzp8j2r7zyim655RY9/vjjuvLKK/Xss8/qmmuu0WuvvXbRnQdgHVkG3B85BjwDWQbcWxVXGufk5GjLli1KTEx0jPPy8lJMTIxSUlKKnCYlJUUJCQlO42JjY7V8+fJiXyc7O1vZ2dmOxxkZGZKkzMxMV7pbSF72iYuavjRc7DKUlsqwLqTKsT48ZV3kT2+MuWDb8siyJ+dYqhzvXalyrA/WhbPyyjLb5IvHe9cZ66OAp22TpbLJcmX4X0m8d8/GunBWXll2qag+cuSIcnNzFRIS4jQ+JCREu3btKnKatLS0ItunpaUV+zpJSUmaOHFiofFhYWGudLdSCpxa0T2oXFgfBUprXRw/flyBgYHnbVMeWfbkHEu8d8/GunBWXllmm3zxeO86Y30U8LRtskSWLxWsC2fllWWXiurykpiY6PTrW15env744w/VqVNHNputQvqUmZmpsLAwHThwQAEBARXSh8qE9VGgsqwLY4yOHz+uBg0aVFgfzlYZcyxVnv9XZcC6cFZZ1gdZLpnK8v+qDFgXBSrLuqhsOZYqZ5Yry/+rsmB9FKgs66KkWXapqK5bt668vb2Vnp7uND49PV316tUrcpp69eq51F6S7Ha77Ha707iaNWu60tUyExAQcMm/yc/G+ihQGdbFhX4Nz1ceWa7MOZYqx/+rsmBdOKsM66MkWWabfEZl+H9VFqyLApVhXVSmbbJUubNcGf5flQnro0BlWBclybJLFyrz8fFRVFSUkpOTHePy8vKUnJysjh07FjlNx44dndpL0urVq4ttD6DskWXA/ZFjwDOQZcADGBctXLjQ2O12M2/ePLNjxw5z//33m5o1a5q0tDRjjDGDBw82Y8eOdbT/6quvTJUqVcyLL75odu7cacaPH2+qVq1qtm3b5upLV6iMjAwjyWRkZFR0VyoF1kcBd10XZNm9/l9lgXXhzB3Xx6WaY2Pc8/9VVlgXBdx1XVyqWXbX/1dZYX0UcLd14XJRbYwx06ZNMw0bNjQ+Pj6mffv2ZuPGjY7nunbtauLi4pzav//+++aKK64wPj4+pmXLlubjjz++qE5XhFOnTpnx48ebU6dOVXRXKgXWRwF3Xhdk+dLGunDmruvjUsyxMe77/yoLrIsC7rwuLsUsu/P/qyywPgq427qwGVOCa/0DAAAAAIBCXDqnGgAAAAAAFKCoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiiuoS+PLLL3XbbbepQYMGstlsWr58eUV3qUIkJSWpXbt2qlGjhoKDg9W7d2/t3r27ortV5mbMmKHWrVs7bj7fsWNHffrppxXdLbiIHBcgy2TZnZHlApdilsmxZyDHBS7FHEuel2WK6hLIyspSmzZtNH369IruSoX64osvNGrUKG3cuFGrV6/WX3/9pZtvvllZWVkV3bUyddlll2nSpEnasmWLvv76a91www26/fbbtX379iLb22w2paamlm8ncUHkuABZJsvujCwXuBSzTI49AzkucCnmWPK8LHNLLRfZbDYtW7ZMvXv3ruiuVLjDhw8rODhYX3zxhbp06VLR3SlXtWvX1uTJkzVs2LBCz9lsNu3du1fh4eHl3zGUCDl2RpbJsrsiy84u1SyTY/dGjp1dqjmW3DvLVSq6A3BfGRkZks4E4FKRm5urxYsXKysrSx07dqzo7gClgiyTZXiGSy3L5Bie6FLLseQZWaaohiV5eXl65JFHdN1116lVq1YV3Z0yt23bNnXs2FGnTp2Sv7+/li1bphYtWlR0t4CLRpbJMjzDpZRlcgxPdSnlWPKsLHNONSwZNWqUvv/+ey1cuLCiu1IumjVrpm+++Ub//e9/9eCDDyouLk47duyQJHXv3l3+/v6OQZJatmzpeNyyZcuK7DpwXmSZLMMzXEpZJsfwVJdSjiXPyjLnVLuI8z6k0aNHa8WKFfryyy/VuHHjiu5OhYiJiVFERIRmzZqlgwcP6uTJk47nLr/8cq1du1ahoaGSpKpVq6pRo0YV1VUUgRyfQZbJsrsjy2dc6lkmx+6NHJ9xqedYcu8sc/g3SswYozFjxmjZsmVau3btJRt46czhOdnZ2ZLkCPfZGjVqVGkvpACQ5QJkGe6MLJ9BjuHOyHEBd84yRXUJ/Pnnn/rpp58cj/fu3atvvvlGtWvXVsOGDSuwZ+Vr1KhRWrBggVasWKEaNWooLS1NkhQYGKhq1apVcO/KTmJiorp3766GDRvq+PHjWrBggdauXatVq1ZVdNfgAnJcgCyTZXdGlgtcilkmx56BHBe4FHMseWCWDS5ozZo1RlKhIS4urqK7Vq6KWgeSzNy5cyu6a2Vq6NChplGjRsbHx8cEBQWZG2+80Xz22WfFtpdk9u7dW34dRImQ4wJkmSy7M7Jc4FLMMjn2DOS4wKWYY2M8L8ucUw0AAAAAgEVc/RsAAAAAAIsoqgEAAAAAsIiiGgAAAAAAiyiqAQAAAACwiKIaAAAAAACLKKoBAAAAALCIohoAAAAAAIsoqgEAAAAAsIiiGgAAAAAAiyiqAQAAAACwiKIaLpk3b55sNptSU1NLbZ5r166VzWbTkiVLSm2eANxT/ufB2rVrK7oruISkpqbKZrNp3rx5JWpvs9k0YcIEl16jW7duatWqleudK0MVnTebzabRo0dfsF1ZfPcAPBmZKX8U1W4iPxw2m03r168v9LwxRmFhYbLZbOrZs2e59u31118v8RcRwNPkZ9PX11cHDx4s9Hxl/CJ9rvXr16t79+4KDQ2Vr6+vGjZsqNtuu00LFiwos9fkcwOl4extY/4QHBys66+/Xp9++ulFzfuTTz5xuXAua7m5uZo7d666deum2rVry263Kzw8XPHx8fr6668runuAx9q+fbsGDRqk0NBQ2e12NWjQQPfcc4+2b99ueZ7//Oc/tXz58tLrJCoURbWb8fX1LfKL7hdffKFffvlFdru9TF9/8ODBOnnypBo1auQYx5djQMrOztakSZMquhsuW7x4sbp06aL09HQ9/PDDmjZtmgYNGqSjR49q9uzZZfa6xX1udOnSRSdPnlSXLl3K7LXheZ555hm98847evvtt/X3v/9dhw8f1q233qqPPvqoRNM3atRIJ0+e1ODBgx3jPvnkE02cOLHI9idPntTTTz9dKn0vqZMnT6pnz54aOnSojDF68sknNWPGDA0ZMkQpKSlq3769fvnll3LtU3kp6rsHUF6WLl2qa665RsnJyYqPj9frr7+uYcOGac2aNbrmmmu0bNkyS/Mty6KazJS/KhXdAbjm1ltv1eLFi/Xqq6+qSpWCf9+CBQsUFRWlI0eOlOnre3t7y9vbu0xfA3BHkZGRmj17thITE9WgQYOK7k6JTZgwQS1atNDGjRvl4+Pj9NyhQ4fKvT9eXl7y9fUt99eFe+vevbvatm3reDxs2DCFhITovffeO+/RW6dPn1ZeXp58fHxcet9VxHv08ccf18qVK/Xyyy/rkUcecXpu/Pjxevnll8u9T+WF7x6oKHv27NHgwYPVpEkTffnllwoKCnI89/DDDys6OlqDBw/Wd999pyZNmlRgT8/IyspS9erVyUwFYE+1mxk4cKB+//13rV692jEuJydHS5Ys0d13312o/YsvvqhOnTqpTp06qlatmqKiooo8dzn/vKbly5erVatWstvtatmypVauXOnU7txzNMLDw7V9+3Z98cUXjkPvunXr5mj/888/q2/fvqpdu7b8/Px07bXX6uOPPy5y2XJzc/Xkk0+qXr16ql69unr16qUDBw44tVm3bp369u2rhg0bym63KywsTH/729908uTJkq5CoEw8+eSTys3NLdHe6tOnT+vZZ59VRESE4/DNJ598UtnZ2Y42PXv2LHYD3bFjR6cCYu7cubrhhhsUHBwsu92uFi1aaMaMGSXq9549e9SuXbtCBbUkBQcHOz3Oy8vTK6+8oquuukq+vr4KCgrSLbfc4nTYaUmW7XyfG0Wd40nu4aqaNWuqWrVqTj8+5583/eKLL2rq1KmO9+iOHTsKnVN97733avr06ZLkdGh5vnPPqT5+/LgeeeQRhYeHy263Kzg4WDfddJO2bt1aqG87duzQ9ddfLz8/P4WGhuqFF1644PL88ssvmjVrlm666aZCBbV0puh87LHHdNlllznG/e9//1P37t0VEBAgf39/3Xjjjdq4ceMFXys8PFz33ntvofHdunVz2r7nZ/X999/XxIkTFRoaqho1aqhPnz7KyMhQdna2HnnkEQUHB8vf31/x8fFOnwNne/fdd9WsWTP5+voqKipKX375pdPzRZ0fumLFCvXo0UMNGjSQ3W5XRESEnn32WeXm5l5wGYGSmjx5sk6cOKE33njDqaCWpLp162rWrFnKyspy5HjChAmy2Wz66aefdO+996pmzZoKDAxUfHy8Tpw44ZjWZrMpKytLb731luPzJT93+/bt08iRI9WsWTNVq1ZNderUUd++fQudH52fiy+++EIjR45UcHCw4zOguHOqX3/9dbVs2dJxCPuoUaN07NixUl1nlyr2VLuZ8PBwdezYUe+99566d+8uSfr000+VkZGhAQMG6NVXX3Vq/8orr6hXr1665557lJOTo4ULF6pv37766KOP1KNHD6e269ev19KlSzVy5EjVqFFDr776qu666y7t379fderUKbI/U6dO1ZgxY+Tv76+nnnpKkhQSEiJJSk9PV6dOnXTixAk99NBDqlOnjt566y316tVLS5Ys0R133OE0r+eee042m01PPPGEDh06pKlTpyomJkbffPONqlWrJunMoaonTpzQgw8+qDp16mjTpk2aNm2afvnlFy1evPjiVzBgUePGjTVkyBDNnj1bY8eOPe/e6vvuu09vvfWW+vTpo0cffVT//e9/lZSUpJ07dzoOI+vfv7+GDBmizZs3q127do5p9+3bp40bN2ry5MmOcTNmzFDLli3Vq1cvValSRR9++KFGjhypvLw8jRo16rz9btSokZKTk/XLL784fSEvyrBhwzRv3jx1795d9913n06fPq1169Zp48aNjiK/JMt2vs+NopB7XEhGRoaOHDkiY4wOHTqkadOm6c8//9SgQYMKtZ07d65OnTql+++/X3a7XbVr11ZeXp5TmxEjRujXX3/V6tWr9c4771zw9R944AEtWbJEo0ePVosWLfT7779r/fr12rlzp6655hpHu6NHj+qWW27RnXfeqX79+mnJkiV64okndNVVVzm26UX59NNPdfr0aafD089n+/btio6OVkBAgP7+97+ratWqmjVrlrp166YvvvhCHTp0KNF8SiIpKUnVqlXT2LFj9dNPP2natGmqWrWqvLy8dPToUU2YMEEbN27UvHnz1LhxY40bN85p+i+++EKLFi3SQw89JLvdrtdff1233HKLNm3adN7rUcybN0/+/v5KSEiQv7+//vOf/2jcuHHKzMx0+nwELsaHH36o8PBwRUdHF/l8ly5dFB4eXmiHUb9+/dS4cWMlJSVp69at+te//qXg4GA9//zzkqR33nlH9913n9q3b6/7779fkhQRESFJ2rx5szZs2KABAwbosssuU2pqqmbMmKFu3bppx44d8vPzc3qtkSNHKigoSOPGjVNWVlaxyzJhwgRNnDhRMTExevDBB7V7927NmDFDmzdv1ldffaWqVataXk+QZOAW5s6daySZzZs3m9dee83UqFHDnDhxwhhjTN++fc31119vjDGmUaNGpkePHo7p8tvky8nJMa1atTI33HCD03hJxsfHx/z000+Ocd9++62RZKZNm1aoH3v37nWMa9mypenatWuhPj/yyCNGklm3bp1j3PHjx03jxo1NeHi4yc3NNcYYs2bNGiPJhIaGmszMTEfb999/30gyr7zySrHLY4wxSUlJxmazmX379hVecUAZOzube/bsMVWqVDEPPfSQ4/muXbuali1bOh5/8803RpK57777nObz2GOPGUnmP//5jzHGmIyMDGO3282jjz7q1O6FF14o9H4vKhexsbGmSZMmF+z/m2++6cj/9ddfb/7xj3+YdevWOfKZ7z//+Y+R5LRs+fLy8lxaNmOK/9zI/zxYs2bNeZeP3MOYgvydO9jtdjNv3jyntnv37jWSTEBAgDl06FCRz82dO9cxbtSoUaa4r0mSzPjx4x2PAwMDzahRo87b165duxpJ5u2333aMy87ONvXq1TN33XXXeaf929/+ZiSZ//3vf+dtl693797Gx8fH7NmzxzHu119/NTVq1DBdunRxjCsqb40aNTJxcXFF9v/szOZP26pVK5OTk+MYP3DgQGOz2Uz37t2dpu/YsaNp1KiR07j8/9fXX3/tGLdv3z7j6+tr7rjjDse4or57FPW5MGLECOPn52dOnTpV6DnAVceOHTOSzO23337edr169TKSTGZmphk/fryRZIYOHerU5o477jB16tRxGle9evUis1bUezslJaXQ50d+Ljp37mxOnz7t1P7czBw6dMj4+PiYm2++2Wn7/tprrxlJZs6cOeddRlwYh3+7oX79+unkyZP66KOPdPz4cX300UdFHvotybGHVzrzC3lGRoaio6OLPCQtJibG8SuZJLVu3VoBAQH6+eefLfXzk08+Ufv27dW5c2fHOH9/f91///1KTU3Vjh07nNoPGTJENWrUcDzu06eP6tevr08++aTI5cnKytKRI0fUqVMnGWP0v//9z1I/gdLSpEkTDR48WG+88YZ+++23Itvkv58TEhKcxj/66KOS5Pi1OyAgQN27d9f7778vY4yj3aJFi3TttdeqYcOGjnFn5yJ/j13Xrl31888/KyMj47x9Hjp0qFauXKlu3bpp/fr1evbZZxUdHa3LL79cGzZscLT797//LZvNpvHjxxeaR/5hsSVdNleRe1zI9OnTtXr1aq1evVrz58/X9ddfr/vuu09Lly4t1Pauu+4qdBjnxapZs6b++9//6tdffz1vO39/f6e95z4+Pmrfvv0Ft7OZmZmS5LSNLE5ubq4+++wz9e7d2+kUkvr16+vuu+/W+vXrHfMrDUOGDHHaw9WhQwcZYzR06FCndh06dNCBAwd0+vRpp/EdO3ZUVFSU43HDhg11++23a9WqVec9lPvsz4Xjx4/ryJEjio6O1okTJ7Rr166LXSxAx48fl3Th3OU/f3auHnjgAac20dHR+v3330uUvbPf23/99Zd+//13NW3aVDVr1izy+/vw4cMveP70559/rpycHD3yyCPy8ioo/4YPH66AgADL22cUoKh2Q0FBQYqJidGCBQu0dOlS5ebmqk+fPkW2/eijj3TttdfK19dXtWvXVlBQkGbMmFHkF+2zv6Tnq1Wrlo4ePWqpn/v27VOzZs0Kjb/yyisdz5/t8ssvd3pss9nUtGlTp/NB9u/fr3vvvVe1a9eWv7+/goKC1LVrV0m6YPEAlIenn35ap0+fLvbc6n379snLy0tNmzZ1Gl+vXj3VrFnTKRf9+/fXgQMHlJKSIunM+c9btmxR//79nab96quvFBMTo+rVq6tmzZoKCgrSk08+KalkuYiNjdWqVat07Ngxffnllxo1apT27dunnj17Oi5WtmfPHjVo0EC1a9cudj6uLJsryD0upH379oqJiVFMTIzuueceffzxx2rRooVGjx6tnJwcp7aNGzcu9dd/4YUX9P333yssLEzt27fXhAkTiiyUL7vsMqdzs6WSbWcDAgIkFXzJP5/Dhw/rxIkTxW5/8/LyCl2v5GKc+90hMDBQkhQWFlZofF5eXqHMnrvtl6QrrrhCJ06c0OHDh4t93e3bt+uOO+5QYGCgAgICFBQU5PjBgs8FlIb8YvlCuSuq+D43F7Vq1ZKkEn2nPnnypMaNG6ewsDDZ7XbVrVtXQUFBOnbsWJHv7ZJ8puVvf8/9XPDx8VGTJk0sb59RgKLaTd1999369NNPNXPmTHXv3l01a9Ys1GbdunXq1auXfH199frrr+uTTz7R6tWrdffddzvt+cpX3K9cRbWtCLm5ubrpppv08ccf64knntDy5cu1evVqx4Vlzj0nDqgITZo00aBBg867t1pSoS/WRbntttvk5+en999/X5L0/vvvy8vLS3379nW02bNnj2688UYdOXJEU6ZM0ccff6zVq1frb3/7myTXcuHn56fo6Gi99tprevrpp3X06FFL9/otybKVFLmHFV5eXrr++uv122+/6ccff3R67uy9QKWlX79++vnnnzVt2jQ1aNBAkydPVsuWLQvlx+p2tnnz5pKkbdu2lU6Hz6O4/Ba317i4ZSrL7xTHjh1T165d9e233+qZZ57Rhx9+qNWrVzvOV+VzAaUhMDBQ9evX13fffXfedt99951CQ0MdP35JF/f+HzNmjJ577jn169dP77//vj777DOtXr1aderUKfK9XRafaXAdFypzU3fccYdGjBihjRs3atGiRUW2+fe//y1fX1+tWrXK6f7Vc+fOLdW+FLcBbtSokXbv3l1ofP5hWefeO+/cLz7GGP30009q3bq1pDNfJn744Qe99dZbGjJkiKPd2VdCByqDp59+WvPnz3d8wTtbo0aNlJeXpx9//NFx1IZ05sJ+x44dc8pF9erV1bNnTy1evFhTpkzRokWLFB0d7XQRtA8//FDZ2dn64IMPnH4ZX7NmzUUtQ/6Fx/J/GIiIiNCqVav0xx9/FLu32pVlK2nhTe5hVf5hxn/++ael6V39cah+/foaOXKkRo4cqUOHDumaa67Rc889d94LkJVU9+7d5e3trfnz51/wYmVBQUHy8/Mrdvvr5eVVaC/y2WrVqlXk1YD37dtXJrcMOnfbL0k//PCD/Pz8ij1Mf+3atfr999+1dOlSp3va7927t9T7h0tbz549NXv2bK1fv97pdMZ869atU2pqqkaMGOHyvIv7jFmyZIni4uL00ksvOcadOnXqoq7Snb/93b17t1OOc3JytHfvXsXExFieN85gT7Wb8vf314wZMzRhwgTddtttRbbx9vaWzWZz+nU5NTW11G80X7169SKDfuutt2rTpk2OQ1elM+dDvvHGGwoPD1eLFi2c2r/99ttOh9gsWbJEv/32m+MLSf6vfmf/ymeM0SuvvFKaiwNctIiICA0aNEizZs1SWlqa03O33nqrpDNXwD7blClTJKnQVfn79++vX3/9Vf/617/07bffFjr0u6hcZGRklPjHs+Tk5CLH558fnX+o2F133SVjjCZOnFiobf5ru7JsxX1unIvcw4q//vpLn332mXx8fJx+4HFF9erVJemC79Pc3NxCh2QGBwerQYMGxd5CylVhYWEaPny4PvvsM02bNq3Q83l5eXrppZf0yy+/yNvbWzfffLNWrFjhdPpUenq6FixYoM6dOzvtUTtXRESENm7c6HTY/EcffVSqh4yfLSUlxek80QMHDmjFihW6+eabL7gX/OzPhZycHL3++utl0kdcuh5//HFVq1ZNI0aM0O+//+703B9//KEHHnhAfn5+evzxx12ed3HbQW9v70J7tKdNm3ZRt4uLiYmRj4+PXn31Vad5v/nmm8rIyCj03QOuY0+1G4uLizvv8z169NCUKVN0yy236O6779ahQ4c0ffp0NW3a9IKHsrgiKipKM2bM0P/93/+padOmCg4O1g033KCxY8c6bv310EMPqXbt2nrrrbe0d+9e/fvf/3a6UIIk1a5dW507d1Z8fLzS09M1depUNW3aVMOHD5d05vC3iIgIPfbYYzp48KACAgL073//2/I530BZeuqpp/TOO+9o9+7datmypWN8mzZtFBcXpzfeeMNxCOOmTZv01ltvqXfv3rr++uud5nPrrbeqRo0aeuyxx+Tt7a277rrL6fmbb75ZPj4+uu222zRixAj9+eefmj17toKDg897+Hm+22+/XY0bN9Ztt92miIgIZWVl6fPPP9eHH36odu3aOX60u/766zV48GC9+uqr+vHHH3XLLbcoLy9P69at0/XXX6/Ro0e7tGzFfW6ci9yjJD799FPHUVCHDh3SggUL9OOPP2rs2LHnLSDPJ//iWQ899JBiY2Pl7e2tAQMGFGp3/PhxXXbZZerTp4/atGkjf39/ff7559q8ebPTnqaL9dJLL2nPnj166KGHtHTpUvXs2VO1atXS/v37tXjxYu3atcvRv//7v//T6tWr1blzZ40cOVJVqlTRrFmzlJ2dfcH7Yt93331asmSJbrnlFvXr10979uzR/PnznS5kWppatWql2NhYp1tqSSryB7x8nTp1Uq1atRQXF6eHHnpINptN77zzTqU5XQ2e4/LLL9dbb72le+65R1dddZWGDRumxo0bKzU1VW+++aaOHDmi9957z1I+oqKi9Pnnn2vKlClq0KCBGjdurA4dOqhnz5565513FBgYqBYtWiglJUWff/55sbe3LYmgoCAlJiZq4sSJuuWWW9SrVy/t3r1br7/+utq1a1fk7QfhonK91jgsO/u2Pedz7i213nzzTXP55Zcbu91umjdvbubOneu43P/ZJBV5O5Bzb61R1G0t0tLSTI8ePUyNGjWMJKdbbuzZs8f06dPH1KxZ0/j6+pr27dubjz76yOk18m/L8d5775nExEQTHBxsqlWrZnr06FHodjk7duwwMTExxt/f39StW9cMHz7cceuvs2+FApSX82UzLi7OSHK6pZYxxvz1119m4sSJpnHjxqZq1aomLCzMJCYmFnsbmHvuucdIMjExMUU+/8EHH5jWrVsbX19fEx4ebp5//nkzZ86cQlktynvvvWcGDBhgIiIiTLVq1Yyvr69p0aKFeeqpp5xucWeMMadPnzaTJ082zZs3Nz4+PiYoKMh0797dbNmyxeVlK+5zo6hb/JB7FKeoW2r5+vqayMhIM2PGDMft3owpuG3W5MmTC82nqFtqnT592owZM8YEBQUZm83mtN3UWbfUys7ONo8//rhp06aNqVGjhqlevbpp06aNef31151e49zb6+WLi4srdKup4pw+fdr861//MtHR0SYwMNBUrVrVNGrUyMTHxxe63dbWrVtNbGys8ff3N35+fub66683GzZscGpTVN6MMeall14yoaGhxm63m+uuu858/fXXxd5Sa/HixU7TFveZmP/d4/Dhw45x+d895s+f7/iucvXVVxfqT1HfPb766itz7bXXmmrVqpkGDRqYv//972bVqlVFLg9wsb777jszcOBAU79+fVO1alVTr149M3DgQLNt2zandkW9z40p+j28a9cu06VLF1OtWjUjyfF9++jRoyY+Pt7UrVvX+Pv7m9jYWLNr165iv5MX9f2jqNcz5swttJo3b26qVq1qQkJCzIMPPmiOHj16MasG/5/NGH7WAwAAAADACs6pBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiS0X19OnTFR4eLl9fX3Xo0EGbNm06b/tjx45p1KhRql+/vux2u6644grH7VoAVAxyDHgGsgx4BrIMuC+Xb6m1aNEiJSQkaObMmerQoYOmTp2q2NhY7d69W8HBwYXa5+Tk6KabblJwcLCWLFmi0NBQ7du3TzVr1iyN/gOwgBwDnoEsA56BLAPuzeWrf3fo0EHt2rXTa6+9JknKy8tTWFiYxowZo7FjxxZqP3PmTE2ePFm7du1S1apVS6fXAC4KOQY8A1kGPANZBtybS0V1Tk6O/Pz8tGTJEvXu3dsxPi4uTseOHdOKFSsKTXPrrbeqdu3a8vPz04oVKxQUFKS7775bTzzxhLy9vYt8nezsbGVnZzse5+Xl6Y8//lCdOnVks9lcWDzg0mGM0fHjx9WgQQN5eRV/Zgc5Bio3sgy4v5LmWCLLQGVW4iy7clPrgwcPGklmw4YNTuMff/xx0759+yKnadasmbHb7Wbo0KHm66+/NgsXLjS1a9c2EyZMKPZ18m+czsDA4Ppw4MABcszA4AEDWWZgcP/hQjkmywwM7jFcKMsun1Ptqry8PAUHB+uNN96Qt7e3oqKidPDgQU2ePFnjx48vcprExEQlJCQ4HmdkZKhhw4Y6cOCAAgICyrrLgFvKzMxUWFiYatSoUerzJsdA+SHLgPsryxxLZBkoLyXNsktFdd26deXt7a309HSn8enp6apXr16R09SvX19Vq1Z1OhTlyiuvVFpamnJycuTj41NoGrvdLrvdXmh8QEAAoQcu4EKHcJFjwD2QZcD9leSwarIMVH4XyrJLt9Ty8fFRVFSUkpOTHePy8vKUnJysjh07FjnNddddp59++kl5eXmOcT/88IPq169fZOABlC1yDHgGsgx4BrIMuD+X71OdkJCg2bNn66233tLOnTv14IMPKisrS/Hx8ZKkIUOGKDEx0dH+wQcf1B9//KGHH35YP/zwgz7++GP985//1KhRo0pvKQC4hBwDnoEsA56BLAPuzeVzqvv376/Dhw9r3LhxSktLU2RkpFauXKmQkBBJ0v79+52ujBYWFqZVq1bpb3/7m1q3bq3Q0FA9/PDDeuKJJ0pvKQC4hBwDnoEsA56BLAPuzeX7VFeEzMxMBQYGKiMjg3M+gGJU9pxU9v4BlUVlz0pl7x9QGbhDTtyhj0BFK2lOXD78GwAAAAAAnEFRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFlorq6dOnKzw8XL6+vurQoYM2bdpUbNt58+bJZrM5Db6+vpY7DKD0kGXA/ZFjwDOQZcB9uVxUL1q0SAkJCRo/fry2bt2qNm3aKDY2VocOHSp2moCAAP3222+OYd++fRfVaQAXjywD7o8cA56BLAPuzeWiesqUKRo+fLji4+PVokULzZw5U35+fpozZ06x09hsNtWrV88xhISEXFSnAVw8sgy4P3IMeAayDLg3l4rqnJwcbdmyRTExMQUz8PJSTEyMUlJSip3uzz//VKNGjRQWFqbbb79d27dvt95jABeNLAPujxwDnoEsA+7PpaL6yJEjys3NLfRLWEhIiNLS0oqcplmzZpozZ45WrFih+fPnKy8vT506ddIvv/xS7OtkZ2crMzPTaQBQesojy+QYKFtskwHPQJYB91fmV//u2LGjhgwZosjISHXt2lVLly5VUFCQZs2aVew0SUlJCgwMdAxhYWFl3U0AF+BqlskxUPmwTQY8A1kGKheXiuq6devK29tb6enpTuPT09NVr169Es2jatWquvrqq/XTTz8V2yYxMVEZGRmO4cCBA650E8AFlEeWyTFQttgmA56BLAPuz6Wi2sfHR1FRUUpOTnaMy8vLU3Jysjp27FiieeTm5mrbtm2qX79+sW3sdrsCAgKcBgClpzyyTI6BssU2GfAMZBlwf1VcnSAhIUFxcXFq27at2rdvr6lTpyorK0vx8fGSpCFDhig0NFRJSUmSpGeeeUbXXnutmjZtqmPHjmny5Mnat2+f7rvvvtJdEgAuIcuA+yPHgGcgy4B7c7mo7t+/vw4fPqxx48YpLS1NkZGRWrlypePiCvv375eXV8EO8KNHj2r48OFKS0tTrVq1FBUVpQ0bNqhFixaltxQAXEaWAfdHjgHPQJYB92YzxpiK7sSFZGZmKjAwUBkZGRyqAhSjsueksvcPqCwqe1Yqe/+AysAdcuIOfQQqWklzUuZX/wYAAAAAwFO5fPg3AKDyCB/7cUV3QamTelR0FwAAACoMe6oBAAAAALCIohoAAAAAAIsoqgEAAAAAsIiiGgAAAAAAiyiqAQAAAACwiKIaAAAAAACLKKoBAAAAALCIohoAAAAAAIuqVHQHAADApSd87McV3QWlTupR0V0A3FplyLFEllHx2FMNAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFVSq6A+UpfOzHFd0FpU7qUdFdANxaZcixRJYBAABwBnuqAQAAAACwiKIaAAAAAACLKKoBAAAAALCIohoAAAAAAIsuqQuVAQAAVDZcgBEA3Bt7qgEAAAAAsIiiGgAAAAAAiyiqAQAAAACwiKIaAAAAAACLKKoBAAAAALDI0tW/p0+frsmTJystLU1t2rTRtGnT1L59+wtOt3DhQg0cOFC33367li9fbuWlUUq40igksgx4AnIMeAayDLgvl/dUL1q0SAkJCRo/fry2bt2qNm3aKDY2VocOHTrvdKmpqXrssccUHR1tubMASg9ZBtwfOQY8A1kG3JvLRfWUKVM0fPhwxcfHq0WLFpo5c6b8/Pw0Z86cYqfJzc3VPffco4kTJ6pJkyYX1WEApYMsA+6PHAOegSwD7s2lojonJ0dbtmxRTExMwQy8vBQTE6OUlJRip3vmmWcUHBysYcOGleh1srOzlZmZ6TQAKD3lkWVyDJQttsmAZyDLgPtzqag+cuSIcnNzFRIS4jQ+JCREaWlpRU6zfv16vfnmm5o9e3aJXycpKUmBgYGOISwszJVuAriA8sgyOQbKFttkwDOQZcD9lenVv48fP67Bgwdr9uzZqlu3bomnS0xMVEZGhmM4cOBAGfYSwIVYyTI5BioXtsmAZyDLQOXj0tW/69atK29vb6WnpzuNT09PV7169Qq137Nnj1JTU3Xbbbc5xuXl5Z154SpVtHv3bkVERBSazm63y263u9I1AC4ojyyTY6BssU0GPANZBtyfS0W1j4+PoqKilJycrN69e0s6E+Lk5GSNHj26UPvmzZtr27ZtTuOefvppHT9+XK+88gqHnQAVhCwD7o8cA56BLHuOynDLWm5XWzFcvk91QkKC4uLi1LZtW7Vv315Tp05VVlaW4uPjJUlDhgxRaGiokpKS5Ovrq1atWjlNX7NmTUkqNB5A+SLLgPsjx4BnIMuAe3O5qO7fv78OHz6scePGKS0tTZGRkVq5cqXj4gr79++Xl1eZnqoNoBSQZcD9kWPAM5BlwL25XFRL0ujRo4s8HEWS1q5de95p582bZ+UlAZQBsgy4P3IMeAayDLgvfvICAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALLJUVE+fPl3h4eHy9fVVhw4dtGnTpmLbLl26VG3btlXNmjVVvXp1RUZG6p133rHcYQClhywD7o8cA56BLAPuy+WietGiRUpISND48eO1detWtWnTRrGxsTp06FCR7WvXrq2nnnpKKSkp+u677xQfH6/4+HitWrXqojsPwDqyDLg/cgx4BrIMuDeXi+opU6Zo+PDhio+PV4sWLTRz5kz5+flpzpw5Rbbv1q2b7rjjDl155ZWKiIjQww8/rNatW2v9+vUX3XkA1pFlwP2RY8AzkGXAvblUVOfk5GjLli2KiYkpmIGXl2JiYpSSknLB6Y0xSk5O1u7du9WlS5di22VnZyszM9NpAFB6yiPL5BgoW2yTAc9AlgH351JRfeTIEeXm5iokJMRpfEhIiNLS0oqdLiMjQ/7+/vLx8VGPHj00bdo03XTTTcW2T0pKUmBgoGMICwtzpZsALqA8skyOgbLFNhnwDGQZcH/lcvXvGjVq6JtvvtHmzZv13HPPKSEhQWvXri22fWJiojIyMhzDgQMHyqObAC7AlSyTY6ByYpsMeAayDFQeVVxpXLduXXl7eys9Pd1pfHp6uurVq1fsdF5eXmratKkkKTIyUjt37lRSUpK6detWZHu73S673e5K1wC4oDyyTI6BssU2GfAMZBlwfy7tqfbx8VFUVJSSk5Md4/Ly8pScnKyOHTuWeD55eXnKzs525aUBlCKyDLg/cgx4BrIMuD+X9lRLUkJCguLi4tS2bVu1b99eU6dOVVZWluLj4yVJQ4YMUWhoqJKSkiSdOX+jbdu2ioiIUHZ2tj755BO98847mjFjRukuCQCXkGXA/ZFjwDOQZcC9uVxU9+/fX4cPH9a4ceOUlpamyMhIrVy50nFxhf3798vLq2AHeFZWlkaOHKlffvlF1apVU/PmzTV//nz179+/9JYCgMvIMuD+yDHgGcgy4N5sxhhT0Z24kMzMTAUGBiojI0MBAQGW5xM+9uNS7JU1qZN6VHQXJFWOdSFVnvXhCUorJ2XFk3IsVZ73bmVYH5VlXXgKslx+Kst7tzKsC6nyrA9PUNlzLJVOH3nvOqsM66OyrAtPUdKclMvVvwEAAAAA8EQU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYZKmonj59usLDw+Xr66sOHTpo06ZNxbadPXu2oqOjVatWLdWqVUsxMTHnbQ+g/JBlwP2RY8AzkGXAfblcVC9atEgJCQkaP368tm7dqjZt2ig2NlaHDh0qsv3atWs1cOBArVmzRikpKQoLC9PNN9+sgwcPXnTnAVhHlgH3R44Bz0CWAffmclE9ZcoUDR8+XPHx8WrRooVmzpwpPz8/zZkzp8j27777rkaOHKnIyEg1b95c//rXv5SXl6fk5OSL7jwA68gy4P7IMeAZyDLg3lwqqnNycrRlyxbFxMQUzMDLSzExMUpJSSnRPE6cOKG//vpLtWvXdq2nAEoNWQbcHzkGPANZBtxfFVcaHzlyRLm5uQoJCXEaHxISol27dpVoHk888YQaNGjg9MFxruzsbGVnZzseZ2ZmutJNABdQHlkmx0DZYpsMeAayDLi/cr3696RJk7Rw4UItW7ZMvr6+xbZLSkpSYGCgYwgLCyvHXgK4kJJkmRwDlRvbZMAzkGWg4rlUVNetW1fe3t5KT093Gp+enq569eqdd9oXX3xRkyZN0meffabWrVuft21iYqIyMjIcw4EDB1zpJoALKI8sk2OgbLFNBjwDWQbcn0tFtY+Pj6KiopwugpB/UYSOHTsWO90LL7ygZ599VitXrlTbtm0v+Dp2u10BAQFOA4DSUx5ZJsdA2WKbDHgGsgy4P5fOqZakhIQExcXFqW3btmrfvr2mTp2qrKwsxcfHS5KGDBmi0NBQJSUlSZKef/55jRs3TgsWLFB4eLjS0tIkSf7+/vL39y/FRQHgCrIMuD9yDHgGsgy4N5eL6v79++vw4cMaN26c0tLSFBkZqZUrVzourrB//355eRXsAJ8xY4ZycnLUp08fp/mMHz9eEyZMuLjeA7CMLAPujxwDnoEsA+7N5aJakkaPHq3Ro0cX+dzatWudHqemplp5CQDlgCwD7o8cA56BLAPuq1yv/g0AAAAAgCehqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyqUtEdACpa+NiPK7oLkqTUST0qugsAAAAAXMSeagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACzi6t8AAAAAgFJzqd1dhz3VAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARVUqugMAAABAvvCxH1d0F5Q6qUdFdwGAG2FPNQAAAAAAFlkqqqdPn67w8HD5+vqqQ4cO2rRpU7Ftt2/frrvuukvh4eGy2WyaOnWq1b4CKEXkGPAMZBnwDGQZcF8uF9WLFi1SQkKCxo8fr61bt6pNmzaKjY3VoUOHimx/4sQJNWnSRJMmTVK9evUuusMALh45BjwDWQY8A1kG3JvLRfWUKVM0fPhwxcfHq0WLFpo5c6b8/Pw0Z86cItu3a9dOkydP1oABA2S32y+6wwAuHjkGPANZBjwDWQbcm0tFdU5OjrZs2aKYmJiCGXh5KSYmRikpKaXeOQCljxwDnoEsA56BLAPuz6Wrfx85ckS5ubkKCQlxGh8SEqJdu3aVWqeys7OVnZ3teJyZmVlq8wYudeQY8AxkGfAMZBlwf5Xy6t9JSUkKDAx0DGFhYRXdJQAuIseAZyDLgGcgy0DZcamorlu3rry9vZWenu40Pj09vVQvkpCYmKiMjAzHcODAgVKbN3CpI8eAZyDLgGcgy4D7c6mo9vHxUVRUlJKTkx3j8vLylJycrI4dO5Zap+x2uwICApwGAKWDHAOegSwDnoEsA+7PpXOqJSkhIUFxcXFq27at2rdvr6lTpyorK0vx8fGSpCFDhig0NFRJSUmSzlx8YceOHY6/Dx48qG+++Ub+/v5q2rRpKS4KgJIix4BnIMuAZyDLgHtzuaju37+/Dh8+rHHjxiktLU2RkZFauXKl4+IK+/fvl5dXwQ7wX3/9VVdffbXj8YsvvqgXX3xRXbt21dq1ay9+CQC4jBwDnoEsA56BLAPuzeWiWpJGjx6t0aNHF/ncuUEODw+XMcbKywAoQ+QY8AxkGfAMZBlwX5Xy6t8AAAAAALgDS3uqAQCobMLHflzRXZAkpU7qUdFdAAAA5Yg91QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYRFENAAAAAIBFFNUAAAAAAFhEUQ0AAAAAgEUU1QAAAAAAWERRDQAAAACARRTVAAAAAABYZKmonj59usLDw+Xr66sOHTpo06ZN522/ePFiNW/eXL6+vrrqqqv0ySefWOosgNJFlgH3R44Bz0CWAfflclG9aNEiJSQkaPz48dq6davatGmj2NhYHTp0qMj2GzZs0MCBAzVs2DD973//U+/evdW7d299//33F915ANaRZcD9kWPAM5BlwL25XFRPmTJFw4cPV3x8vFq0aKGZM2fKz89Pc+bMKbL9K6+8oltuuUWPP/64rrzySj377LO65ppr9Nprr1105wFYR5YB90eOAc9AlgH3VsWVxjk5OdqyZYsSExMd47y8vBQTE6OUlJQip0lJSVFCQoLTuNjYWC1fvrzY18nOzlZ2drbjcUZGhiQpMzPTle4Wkpd94qKmLw0XuwylpTKsC6lyrA9PWRf50xtjLti2PLLsyTmWKsd7V6oc64N14ay8ssw2+eLx3nXG+ijgadtkqWyyXBn+VxLv3bOxLpyVV5ZdKqqPHDmi3NxchYSEOI0PCQnRrl27ipwmLS2tyPZpaWnFvk5SUpImTpxYaHxYWJgr3a2UAqdWdA8qF9ZHgdJaF8ePH1dgYOB525RHlj05xxLv3bOxLpyVV5bZJl883rvOWB8FPG2bLJHlSwXrwll5Zdmlorq8JCYmOv36lpeXpz/++EN16tSRzWarkD5lZmYqLCxMBw4cUEBAQIX0oTJhfRSoLOvCGKPjx4+rQYMGFdaHs1XGHEuV5/9VGbAunFWW9UGWS6ay/L8qA9ZFgcqyLipbjqXKmeXK8v+qLFgfBSrLuihpll0qquvWrStvb2+lp6c7jU9PT1e9evWKnKZevXoutZcku90uu93uNK5mzZqudLXMBAQEXPJv8rOxPgpUhnVxoV/D85VHlitzjqXK8f+qLFgXzirD+ihJltkmn1EZ/l+VBeuiQGVYF5VpmyxV7ixXhv9XZcL6KFAZ1kVJsuzShcp8fHwUFRWl5ORkx7i8vDwlJyerY8eORU7TsWNHp/aStHr16mLbAyh7ZBlwf+QY8AxkGfAAxkULFy40drvdzJs3z+zYscPcf//9pmbNmiYtLc0YY8zgwYPN2LFjHe2/+uorU6VKFfPiiy+anTt3mvHjx5uqVauabdu2ufrSFSojI8NIMhkZGRXdlUqB9VHAXdcFWXav/1dZYF04c8f1canm2Bj3/H+VFdZFAXddF5dqlt31/1VWWB8F3G1duFxUG2PMtGnTTMOGDY2Pj49p37692bhxo+O5rl27mri4OKf277//vrniiiuMj4+Padmypfn4448vqtMV4dSpU2b8+PHm1KlTFd2VSoH1UcCd1wVZvrSxLpy56/q4FHNsjPv+v8oC66KAO6+LSzHL7vz/KgusjwLuti5sxpTgWv8AAAAAAKAQl86pBgAAAAAABSiqAQAAAACwiKIaAAAAAACLKKoBAAAAALCIoroEvvzyS912221q0KCBbDabli9fXtFdqhBJSUlq166datSooeDgYPXu3Vu7d++u6G6VuRkzZqh169aOm8937NhRn376aUV3Cy4ixwXIMll2Z2S5wKWYZXLsGchxgUsxx5LnZZmiugSysrLUpk0bTZ8+vaK7UqG++OILjRo1Shs3btTq1av1119/6eabb1ZWVlZFd61MXXbZZZo0aZK2bNmir7/+WjfccINuv/12bd++vcj2NptNqamp5dtJXBA5LkCWybI7I8sFLsUsk2PPQI4LXIo5ljwvy9xSy0U2m03Lli1T7969K7orFe7w4cMKDg7WF198oS5dulR0d8pV7dq1NXnyZA0bNqzQczabTXv37lV4eHj5dwwlQo6dkWWy7K7IsrNLNcvk2L2RY2eXao4l985ylYruANxXRkaGpDMBuFTk5uZq8eLFysrKUseOHSu6O0CpIMtkGZ7hUssyOYYnutRyLHlGlimqYUleXp4eeeQRXXfddWrVqlVFd6fMbdu2TR07dtSpU6fk7++vZcuWqUWLFhXdLeCikWWyDM9wKWWZHMNTXUo5ljwry5xTDUtGjRql77//XgsXLqzorpSLZs2a6ZtvvtF///tfPfjgg4qLi9OOHTskSd27d5e/v79jkKSWLVs6Hrds2bIiuw6cF1kmy/AMl1KWyTE81aWUY8mzssw51S7ivA9p9OjRWrFihb788ks1bty4ortTIWJiYhQREaFZs2bp4MGDOnnypOO5yy+/XGvXrlVoaKgkqWrVqmrUqFFFdRVFIMdnkGWy7O7I8hmXepbJsXsjx2dc6jmW3DvLHP6NEjPGaMyYMVq2bJnWrl17yQZeOnN4TnZ2tiQ5wn22Ro0aVdoLKQBkuQBZhjsjy2eQY7gzclzAnbNMUV0Cf/75p3766SfH47179+qbb75R7dq11bBhwwrsWfkaNWqUFixYoBUrVqhGjRpKS0uTJAUGBqpatWoV3Luyk5iYqO7du6thw4Y6fvy4FixYoLVr12rVqlUV3TW4gBwXIMtk2Z2R5QKXYpbJsWcgxwUuxRxLHphlgwtas2aNkVRoiIuLq+iulaui1oEkM3fu3IruWpkaOnSoadSokfHx8TFBQUHmxhtvNJ999lmx7SWZvXv3ll8HUSLkuABZJsvujCwXuBSzTI49AzkucCnm2BjPyzLnVAMAAAAAYBFX/wYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqgGAAAAAMAiimoAAAAAACyiqAYAAAAAwCKKagAAAAAALKKoBgAAAADAIopqAAAAAAAsoqguoXvvvVfh4eEV3Y0y4w7L161bN3Xr1q1M5r127VrZbDatXbu2TOZ/PqmpqbLZbJo3b165vzYAAACAi3NJFNXz5s2TzWZzDL6+vrriiis0evRopaenV3T3SkV4eLjTMp493HLLLRXdvXIVHh6unj17VnQ3gAqX/9nn6+urgwcPFnq+W7duatWqleMx2QEAAHBdlYruQHl65pln1LhxY506dUrr16/XjBkz9Mknn+j777+Xn5/feaedPXu28vLyyqmn1kRGRurRRx8tNL5BgwYV0BsAlUV2drYmTZqkadOmVXRXAAAAPM4lVVR3795dbdu2lSTdd999qlOnjqZMmaIVK1Zo4MCBRU6TlZWl6tWrq2rVquXZVUtCQ0M1aNCgiu6GZfnrGkDpioyM1OzZs5WYmMiPbAAAAKXskjj8uzg33HCDJGnv3r2SzpxX7O/vrz179ujWW29VjRo1dM899zieO/uc4/zzYF988UW98cYbioiIkN1uV7t27bR58+ZCr7Vr1y7169dPQUFBqlatmpo1a6annnrKqc3Bgwc1dOhQhYSEyG63q2XLlpozZ06pL/fy5cvVqlUr+fr6qlWrVlq2bFmhNtdcc43uvPNOp3FXXXWVbDabvvvuO8e4RYsWyWazaefOnZKkffv2aeTIkWrWrJmqVaumOnXqqG/fvkpNTXWaV/5hqV988YVGjhyp4OBgXXbZZY7n89dptWrV1L59e61bt+6ilnnhwoWKiopSjRo1FBAQoKuuukqvvPLKeadZt26d+vbtq4YNG8putyssLEx/+9vfdPLkSad2+e+bgwcPqnfv3vL391dQUJAee+wx5ebmOrU9duyY7r33XgUGBqpmzZqKi4vTsWPHLmrZgAt58sknlZubq0mTJlV0VwAAADzOJbWn+lx79uyRJNWpU8cx7vTp04qNjVXnzp314osvXvCw8AULFuj48eMaMWKEbDabXnjhBd155536+eefHXu3v/vuO0VHR6tq1aq6//77FR4erj179ujDDz/Uc889J0lKT0/XtddeK5vNptGjRysoKEiffvqphg0bpszMTD3yyCMXXJ6//vpLR44cKTS+evXqqlatmiTps88+01133aUWLVooKSlJv//+u+Lj450KWkmKjo7We++953j8xx9/aPv27fLy8tK6devUunVrSWcKz6CgIF155ZWSpM2bN2vDhg0aMGCALrvsMqWmpmrGjBnq1q2bduzYUWh9jhw5UkFBQRo3bpyysrIkSW+++aZGjBihTp066ZFHHtHPP/+sXr16qXbt2goLC7vgejjX6tWrNXDgQN144416/vnnJUk7d+7UV199pYcffrjY6RYvXqwTJ07owQcfVJ06dbRp0yZNmzZNv/zyixYvXuzUNjc3V7GxserQoYNefPFFff7553rppZcUERGhBx98UJJkjNHtt9+u9evX64EHHtCVV16pZcuWKS4uzuVlAlzRuHFjDRkyRLNnz9bYsWPZWw0AAFCazCVg7ty5RpL5/PPPzeHDh82BAwfMwoULTZ06dUy1atXML7/8YowxJi4uzkgyY8eOLTSPuLg406hRI8fjvXv3GkmmTp065o8//nCMX7FihZFkPvzwQ8e4Ll26mBo1aph9+/Y5zTMvL8/x97Bhw0z9+vXNkSNHnNoMGDDABAYGmhMnTpx3GRs1amQkFTkkJSU52kVGRpr69eubY8eOOcZ99tlnRpLT8i1evNhIMjt27DDGGPPBBx8Yu91uevXqZfr37+9o17p1a3PHHXc4HhfVz5SUFCPJvP32245x+f+Tzp07m9OnTzvG5+TkmODgYBMZGWmys7Md49944w0jyXTt2vW86yF/XfTo0cPx+OGHHzYBAQFOr3OuNWvWGElmzZo1512WpKQkY7PZnP6X+e+bZ555xqnt1VdfbaKiohyPly9fbiSZF154wTHu9OnTJjo62kgyc+fOveCyAa7Iz9nmzZvNnj17TJUqVcxDDz3keL5r166mZcuWjsfnZgcA8P/au/8gr+s6D+DPXYQlQhYNWBRXSLAMTTAQDhWtZo06zqLp5qjJoM3oSvHsdmqUy6Bf19JhDp2RqHeYozkylmY3Gp7tRdZFxwkxp5l0niJE7gKRi1Iutbv3h+PixiJ8P7vsrvJ4zHxm/L73/f58X9+P+5rZJ58fX4BDO6ou/66pqcnIkSNTXV2d97///Rk6dGjuvvvujBkzptO8F88sHo65c+fmuOOO63g9c+bMJMkTTzyRJNm5c2cefPDBfOQjH8nJJ5/caW1ZWVmSF85gfuc738lFF12U9vb27Nq1q2ObNWtWmpubs3HjxkPWMn369DzwwAMHbC/eL/70009n06ZNmT9/fiorKzvWXXjhhZk4cWKnfb34OR588MEkL5yRPvvss3PhhRd2XIr9zDPP5JFHHumYm6TjjHjywpnz3/72t5kwYUKGDx/e5WdYsGBBBgwY0PH6oYceyo4dO/Lxj388gwYN6hh/8ZLpIoYPH569e/fmgQceKGndSz/L3r17s2vXrpxzzjlpb2/Pz3/+8wPmf/zjH+/0eubMmR2/B0ly33335Zhjjun0+zVgwIBcfvnlJdUFRZxyyin50Ic+lBtvvDFPP/10X5cDAPCqcVSF6hUrVuSBBx7ID3/4wzz66KN54oknMmvWrE5zjjnmmAMuhX45fx6UXwzYv/vd75LsD9cv/dqaP7dz584888wzufHGGzNy5MhOW21tbZJkx44dh6xlxIgRqampOWAbO3Zskhfud06SU0899YC1b3zjGzu9rqqqyqmnntoRoH/84x9n5syZOf/88/Ob3/wmTzzxRP7zP/8zbW1tnUL1H/7whyxevDjV1dWpqKjIiBEjMnLkyDzzzDNpbm4+4H1f//rXd3p9sBoHDhyYU0455ZDHoCuXXnpp3vCGN+Rd73pXTjrppHzkIx/JmjVrDrlu69at+fCHP5zjjz++4z7pCy64IEkO+CyDBw/OyJEjO40dd9xxHb8HL362E044IUOHDu0078+PPRwpV199df70pz+5txoAoAcdVfdUT5s2rePp3wdTUVGR8vLD/7eGl55lfan29vbD3seLX9V18cUXH/T+2hfvYe5N5513XhoaGvKHP/whGzZsyOLFi3PGGWdk+PDh+fGPf5xf/vKXGTp0aM4666yONZdffnluvvnmfPKTn8yMGTNSWVmZsrKyvP/97+/yK8leejb4SBk1alQ2bdqU+++/P9///vfz/e9/PzfffHPmzZuXW265pcs1ra2tufDCC7N79+5ceeWVOe200/La174227dvz4c//OEDPsvBfg+gPznllFNy8cUX58Ybb8xVV13V1+UAALwqHFWhui+8eHb1kUceOeickSNH5thjj01ra2tqamqOWC0vnrH+3//93wN+tnnz5gPGZs6cmZtvvjl33HFHWltbc84556S8vDznnXdeR6g+55xzOgXKb3/725k/f36++tWvdow9//zzh/2E65fW+OLT2ZMXLiV/8sknM2nSpMPaz58bNGhQLrroolx00UVpa2vLpZdemhtuuCGf/exnM2HChAPmP/zww/nVr36VW265JfPmzesYL/US8pcaO3ZsGhoa8txzz3U6W93VsYcj5eqrr85tt93W8dA+AAC656i6/LsvjBw5Mueff35WrVqVrVu3dvrZi2ezBwwYkPe97335zne+02X43rlzZ4/UcsIJJ2Ty5Mm55ZZbOl2+/MADD+TRRx89YP6Ll3V/5StfyZlnntlxT/PMmTPT0NCQhx56qNOl3y9+lj8/S3/dddcd8NVSBzN16tSMHDkyK1euzL59+zrGv/nNbxb+6qnf/va3nV6Xl5d3nPlvaWnpcs2L/1Dw0s/S3t5+yK/hejl/+Zd/mT/96U+5/vrrO8ZaW1tz3XXXFd4nlGr8+PG5+OKLc8MNN6SxsbGvywEAeMVzproX/PM//3POO++8vOUtb8nHPvaxvP71r8+WLVty7733ZtOmTUmSpUuX5oc//GGmT5+eBQsWZOLEidm9e3c2btyYH/zgB9m9e/ch32f79u257bbbDhgfOnRo5syZkySpr6/P7Nmzc9555+UjH/lIdu/eneuuuy6nn356nnvuuU7rJkyYkNGjR2fz5s2dHqZ1/vnn58orr0ySA0L1X/3VX+XWW29NZWVlJk6cmHXr1uUHP/hBp68tezkDBw7Ml770pfzt3/5t3v72t2fu3Ll58sknc/PNNxe+p/qjH/1odu/enbe//e056aST8tRTT+W6667L5MmTO74K7M+ddtppGT9+fD71qU9l+/btGTZsWL7zne90uke6VBdddFHOPffcXHXVVdmyZUsmTpyYu+66q8t7zeFI+sxnPpNbb701mzdvzumnn97pZ48//ni+9KUvHbDmrLPOyuzZs3urRACAVwyhuhdMmjQpP/vZz/LZz342119/fZ5//vmMHTs2f/M3f9Mxp6qqKuvXr88XvvCF3HXXXfnGN76R173udTn99NMP+zLNTZs25UMf+tAB42PHju0I1e985ztz55135uqrr86iRYsyfvz43Hzzzbnnnnuydu3aA9bOnDkzd955Z84777yOsSlTpmTIkCH505/+lOnTp3ea/7WvfS0DBgzIt771rTz//PM599xz84Mf/OCAB8K9nI997GNpbW3NsmXL8ulPfzpvfvOb873vfS+f/exnD3sfL/XiPaTf+MY38swzz2T06NGZO3duPve5zx30/vmBAwfm3/7t3/J3f/d3qa+vz+DBg/Pe9743CxcuLHwJenl5eb73ve/lk5/8ZG677baUlZXl3e9+d7761a92ui8djrQJEybk4osv7vKZAps3b+6y1y655BKhGgCgC2XtpTxRCwAAAOjgnmoAAAAoSKgGAACAgoRqAAAAKKhQqF6xYkXGjRuXwYMHZ/r06Vm/fv3Lzn/mmWdy2WWX5YQTTkhFRUXe8IY35L777itUMNAz9DEAAHRfyU//Xr16derq6rJy5cpMnz49y5cvz6xZs7J58+aMGjXqgPn79u3LhRdemFGjRuXb3/52xowZk6eeeirDhw/vifqBAvQxAAD0jJKf/j19+vScffbZ+frXv54kaWtrS3V1dS6//PJcddVVB8xfuXJlli1blsceeywDBw7smaqBbtHHAADQM0q6/Hvfvn3ZsGFDampq9u+gvDw1NTVZt25dl2u+973vZcaMGbnssstSVVWVM844I1/+8pfT2travcqBQvQxAAD0nJIu/961a1daW1tTVVXVabyqqiqPPfZYl2ueeOKJ/Md//Ec++MEP5r777svjjz+eSy+9NH/84x+zZMmSLte0tLSkpaWl43VbW1t2796d173udSkrKyulZDhqtLe359lnn82JJ56Y8vKD/3uZPob+7XB7GQDoH0q+p7pUbW1tGTVqVG688cYMGDAgU6ZMyfbt27Ns2bKD/jFeX1+fz3/+80e6NHhV2rZtW0466aQe3ac+ht53JHoZAOh5JYXqESNGZMCAAWlqauo03tTUlNGjR3e55oQTTsjAgQMzYMCAjrE3velNaWxszL59+zJo0KAD1ixatCh1dXUdr5ubm3PyySdn27ZtGTZsWCklw1Fjz549qa6uzrHHHvuy8/Qx9G+H28sAQP9QUqgeNGhQpkyZkoaGhsyZMyfJC2ewGhoasnDhwi7XnHvuubn99tvT1tbWcRnbr371q5xwwgld/iGeJBUVFamoqDhgfNiwYf4Yh0M41KXV+hheGdwmAQCvDCXfrFVXV5ebbropt9xyS375y1/mE5/4RPbu3Zva2tokybx587Jo0aKO+Z/4xCeye/fuXHHFFfnVr36Ve++9N1/+8pdz2WWX9dynAEqijwEAoGeUfE/13Llzs3PnzixevDiNjY2ZPHly1qxZ0/HQo61bt3Z6sEp1dXXuv//+/P3f/33OPPPMjBkzJldccUWuvPLKnvsUQEn0MQAA9IySv6e6L+zZsyeVlZVpbm522SgcRH/vk/5eH/QXegUAXll8VwcAAAAUJFQDAABAQUI1AAAAFCRUAwAAQEFCNQAAABQkVAMAAEBBQjUAAAAUJFQDAABAQUI1AAAAFCRUAwAAQEFCNQAAABQkVAMAAEBBQjUAAAAUJFQDAABAQUI1AAAAFCRUAwAAQEFCNQAAABQkVAMAAEBBQjUAAAAUJFQDAABAQUI1AAAAFCRUAwAAQEFCNQAAABQkVAMAAEBBQjUAAAAUJFQDAABAQUI1AAAAFCRUAwAAQEFCNQAAABQkVAMAAEBBQjUAAAAUJFQDAABAQUI1AAAAFCRUAwAAQEHHFFm0YsWKLFu2LI2NjZk0aVKuu+66TJs2rcu53/zmN1NbW9tprKKiIs8//3yRtwZ60Cuxl8dddW+vvt/BbFk6u69LAACgHyj5TPXq1atTV1eXJUuWZOPGjZk0aVJmzZqVHTt2HHTNsGHD8vTTT3dsTz31VLeKBrpPLwMAQPeVHKqvvfbaLFiwILW1tZk4cWJWrlyZIUOGZNWqVQddU1ZWltGjR3dsVVVV3Soa6D69DAAA3VdSqN63b182bNiQmpqa/TsoL09NTU3WrVt30HXPPfdcxo4dm+rq6rznPe/JL37xi+IVA92mlwEAoGeUFKp37dqV1tbWA85OVVVVpbGxscs1b3zjG7Nq1arcc889ue2229LW1pZzzjknv/71rw/6Pi0tLdmzZ0+nDeg5vdHL+hgAgKPBEX/694wZMzJv3rxMnjw5F1xwQe66666MHDkyN9xww0HX1NfXp7KysmOrrq4+0mUCh1BqL+tjAACOBiWF6hEjRmTAgAFpamrqNN7U1JTRo0cf1j4GDhyYs846K48//vhB5yxatCjNzc0d27Zt20opEziE3uhlfQwAwNGgpFA9aNCgTJkyJQ0NDR1jbW1taWhoyIwZMw5rH62trXn44YdzwgknHHRORUVFhg0b1mkDek5v9LI+BgDgaFDy91TX1dVl/vz5mTp1aqZNm5bly5dn7969Hd9fO2/evIwZMyb19fVJki984Qv5i7/4i0yYMCHPPPNMli1blqeeeiof/ehHe/aTACXRywAA0H0lh+q5c+dm586dWbx4cRobGzN58uSsWbOm44FHW7duTXn5/hPgv/vd77JgwYI0NjbmuOOOy5QpU/LTn/40EydO7LlPAZRMLwMAQPeVtbe3t/d1EYeyZ8+eVFZWprm5uVuXkI676t4erKqYLUtn93UJvEr1VJ8cKa+mPk70MkdOf+9lAKCzI/70bwAAAHi1EqoBAACgIKEaAAAAChKqAQAAoCChGgAAAAoSqgEAAKAgoRoAAAAKEqoBAACgIKEaAAAAChKqAQAAoCChGgAAAAoSqgEAAKAgoRoAAAAKEqoBAACgIKEaAAAAChKqAQAAoCChGgAAAAoSqgEAAKAgoRoAAAAKEqoBAACgIKEaAAAAChKqAQAAoCChGgAAAAoSqgEAAKAgoRoAAAAKEqoBAACgIKEaAAAAChKqAQAAoCChGgAAAAoSqgEAAKAgoRoAAAAKEqoBAACgoGP6ugAAiht31b19XUK2LJ3d1yUAAPQZZ6oBAACgIKEaAAAACioUqlesWJFx48Zl8ODBmT59etavX39Y6+64446UlZVlzpw5Rd4W6GF6GQAAuqfkUL169erU1dVlyZIl2bhxYyZNmpRZs2Zlx44dL7tuy5Yt+dSnPpWZM2cWLhboOXoZAAC6r+RQfe2112bBggWpra3NxIkTs3LlygwZMiSrVq066JrW1tZ88IMfzOc///mccsop3SoY6Bl6GQAAuq+kUL1v375s2LAhNTU1+3dQXp6ampqsW7fuoOu+8IUvZNSoUbnkkksO631aWlqyZ8+eThvQc3qjl/UxAABHg5JC9a5du9La2pqqqqpO41VVVWlsbOxyzU9+8pP867/+a2666abDfp/6+vpUVlZ2bNXV1aWUCRxCb/SyPgYA4GhwRJ/+/eyzz+ZDH/pQbrrppowYMeKw1y1atCjNzc0d27Zt245glcChFOllfQwAwNHgmFImjxgxIgMGDEhTU1On8aampowePfqA+f/3f/+XLVu25KKLLuoYa2tre+GNjzkmmzdvzvjx4w9YV1FRkYqKilJKA0rQG72sjwEAOBqUdKZ60KBBmTJlShoaGjrG2tra0tDQkBkzZhww/7TTTsvDDz+cTZs2dWzvfve787a3vS2bNm1yOSj0Eb0MAAA9o6Qz1UlSV1eX+fPnZ+rUqZk2bVqWL1+evXv3pra2Nkkyb968jBkzJvX19Rk8eHDOOOOMTuuHDx+eJAeMA71LLwMAQPeVHKrnzp2bnTt3ZvHixWlsbMzkyZOzZs2ajgcebd26NeXlR/RWbaAH6GUAAOi+svb29va+LuJQ9uzZk8rKyjQ3N2fYsGGF9zPuqnt7sKpitiyd3dcl8CrVU31ypLya+jjpP73cH45HfzkWrxb9vZcBgM6chgIAAICChGoAAAAoSKgGAACAgoRqAAAAKEioBgAAgIKEagAAAChIqAYAAICChGoAAAAoSKgGAACAgoRqAAAAKEioBgAAgIKEagAAAChIqAYAAICChGoAAAAoSKgGAACAgoRqAAAAKEioBgAAgIKEagAAAChIqAYAAICChGoAAAAo6Ji+LoC+Me6qe/u6hCTJlqWz+7oEAACAwpypBgAAgIKEagAAAChIqAYAAICChGoAAAAoSKgGAACAgoRqAAAAKEioBgAAgIKEagAAAChIqAYAAICChGoAAAAoSKgGAACAgoRqAAAAKEioBgAAgIIKheoVK1Zk3LhxGTx4cKZPn57169cfdO5dd92VqVOnZvjw4Xnta1+byZMn59Zbby1cMNBz9DIAAHRPyaF69erVqaury5IlS7Jx48ZMmjQps2bNyo4dO7qcf/zxx+czn/lM1q1bl//5n/9JbW1tamtrc//993e7eKA4vQwAAN1Xcqi+9tprs2DBgtTW1mbixIlZuXJlhgwZklWrVnU5/61vfWve+9735k1velPGjx+fK664ImeeeWZ+8pOfdLt4oDi9DAAA3VdSqN63b182bNiQmpqa/TsoL09NTU3WrVt3yPXt7e1paGjI5s2bc/755x90XktLS/bs2dNpA3pOb/SyPgYA4GhQUqjetWtXWltbU1VV1Wm8qqoqjY2NB13X3NycoUOHZtCgQZk9e3auu+66XHjhhQedX19fn8rKyo6turq6lDKBQ+iNXtbHAAAcDXrl6d/HHntsNm3alP/+7//OP/7jP6auri5r16496PxFixalubm5Y9u2bVtvlAkcQim9rI8BADgaHFPK5BEjRmTAgAFpamrqNN7U1JTRo0cfdF15eXkmTJiQJJk8eXJ++ctfpr6+Pm9961u7nF9RUZGKiopSSgNK0Bu9rI8BADgalHSmetCgQZkyZUoaGho6xtra2tLQ0JAZM2Yc9n7a2trS0tJSylsDPUgvAwBAzyjpTHWS1NXVZf78+Zk6dWqmTZuW5cuXZ+/evamtrU2SzJs3L2PGjEl9fX2SF+6rnDp1asaPH5+Wlpbcd999ufXWW3P99df37CcBSqKXAQCg+0oO1XPnzs3OnTuzePHiNDY2ZvLkyVmzZk3HA4+2bt2a8vL9J8D37t2bSy+9NL/+9a/zmte8Jqeddlpuu+22zJ07t+c+BVAyvQwAAN1X1t7e3t7XRRzKnj17UllZmebm5gwbNqzwfsZddW8PVlXMlqWz+7qEJP3jWCT953i8GvRUnxwpr6Y+TvrP725/OB795Vi8WvT3XgYAOuuVp38DAADAq5FQDQAAAAUJ1QAAAFCQUA0AAAAFCdUAAABQkFANAAAABQnVAAAAUJBQDQAAAAUJ1QAAAFCQUA0AAAAFCdUAAABQkFANAAAABQnVAAAAUJBQDQAAAAUJ1QAAAFCQUA0AAAAFCdUAAABQkFANAAAABQnVAAAAUJBQDQAAAAUJ1QAAAFCQUA0AAAAFCdUAAABQkFANAAAABQnVAAAAUJBQDQAAAAUJ1QAAAFCQUA0AAAAFCdUAAABQkFANAAAABQnVAAAAUJBQDQAAAAUJ1QAAAFCQUA0AAAAFFQrVK1asyLhx4zJ48OBMnz4969evP+jcm266KTNnzsxxxx2X4447LjU1NS87H+g9ehkAALqn5FC9evXq1NXVZcmSJdm4cWMmTZqUWbNmZceOHV3OX7t2bT7wgQ/khz/8YdatW5fq6uq84x3vyPbt27tdPFCcXgYAgO4rOVRfe+21WbBgQWprazNx4sSsXLkyQ4YMyapVq7qc/61vfSuXXnppJk+enNNOOy3/8i//kra2tjQ0NHS7eKA4vQwAAN1XUqjet29fNmzYkJqamv07KC9PTU1N1q1bd1j7+P3vf58//vGPOf7440urFOgxehkAAHrGMaVM3rVrV1pbW1NVVdVpvKqqKo899thh7ePKK6/MiSee2OmP+T/X0tKSlpaWjtd79uwppUzgEHqjl/UxAABHg159+vfSpUtzxx135O67787gwYMPOq++vj6VlZUdW3V1dS9WCRzK4fSyPgYA4GhQUqgeMWJEBgwYkKampk7jTU1NGT169Muuveaaa7J06dL8+7//e84888yXnbto0aI0Nzd3bNu2bSulTOAQeqOX9TEAAEeDkkL1oEGDMmXKlE4PJnrxQUUzZsw46Lp/+qd/yhe/+MWsWbMmU6dOPeT7VFRUZNiwYZ02oOf0Ri/rYwAAjgYl3VOdJHV1dZk/f36mTp2aadOmZfny5dm7d29qa2uTJPPmzcuYMWNSX1+fJPnKV76SxYsX5/bbb8+4cePS2NiYJBk6dGiGDh3agx8FKIVeBgCA7is5VM+dOzc7d+7M4sWL09jYmMmTJ2fNmjUdDzzaunVrysv3nwC//vrrs2/fvvz1X/91p/0sWbIkn/vc57pXPVCYXgYAgO4rOVQnycKFC7Nw4cIuf7Z27dpOr7ds2VLkLYBeoJcBAKB7evXp3wAAAPBqIlQDAABAQUI1AAAAFCRUAwAAQEFCNQAAABQkVAMAAEBBQjUAAAAUVOh7quHVZNxV9/Z1CUmSLUtn93UJAABAiZypBgAAgIKEagAAAChIqAYAAICChGoAAAAoSKgGAACAgoRqAAAAKEioBgAAgIKEagAAAChIqAYAAICChGoAAAAoSKgGAACAgoRqAAAAKEioBgAAgIKEagAAAChIqAYAAICChGoAAAAoSKgGAACAgoRqAAAAKEioBgAAgIKEagAAAChIqAYAAICChGoAAAAoSKgGAACAgoRqAAAAKEioBgAAgIKEagAAAChIqAYAAICCCoXqFStWZNy4cRk8eHCmT5+e9evXH3TuL37xi7zvfe/LuHHjUlZWluXLlxetFehB+hgAALqv5FC9evXq1NXVZcmSJdm4cWMmTZqUWbNmZceOHV3O//3vf59TTjklS5cuzejRo7tdMNB9+hgAAHpGyaH62muvzYIFC1JbW5uJEydm5cqVGTJkSFatWtXl/LPPPjvLli3L+9///lRUVHS7YKD79DEAAPSMkkL1vn37smHDhtTU1OzfQXl5ampqsm7duh4rqqWlJXv27Om0AT1DHwMAQM8pKVTv2rUrra2tqaqq6jReVVWVxsbGHiuqvr4+lZWVHVt1dXWP7RuOdvoYAAB6Tr98+veiRYvS3NzcsW3btq2vSwJKpI8BADgaHFPK5BEjRmTAgAFpamrqNN7U1NSjDy+qqKhw3yYcIfoYAAB6TklnqgcNGpQpU6akoaGhY6ytrS0NDQ2ZMWNGjxcH9Dx9DAAAPaekM9VJUldXl/nz52fq1KmZNm1ali9fnr1796a2tjZJMm/evIwZMyb19fVJXngo0qOPPtrx39u3b8+mTZsydOjQTJgwoQc/CnC49DEAAPSMkkP13Llzs3PnzixevDiNjY2ZPHly1qxZ0/HQo61bt6a8fP8J8N/85jc566yzOl5fc801ueaaa3LBBRdk7dq13f8EQMn0MQAA9IySQ3WSLFy4MAsXLuzyZ3/+B/a4cePS3t5e5G2AI0gfAwBA9/XLp38DAADAK4FQDQAAAAUJ1QAAAFCQUA0AAAAFCdUAAABQUKGnfwNAfzPuqnv7uoQkyZals/u6BACgFzlTDQAAAAUJ1QAAAFCQUA0AAAAFCdUAAABQkFANAAAABQnVAAAAUJBQDQAAAAUJ1QAAAFCQUA0AAAAFCdUAAABQkFANAAAABQnVAAAAUJBQDQAAAAUJ1QAAAFCQUA0AAAAFCdUAAABQkFANAAAABQnVAAAAUJBQDQAAAAUJ1QAAAFCQUA0AAAAFCdUAAABQkFANAAAABQnVAAAAUJBQDQAAAAUJ1QAAAFCQUA0AAAAFCdUAAABQUKFQvWLFiowbNy6DBw/O9OnTs379+pedf+edd+a0007L4MGD8+Y3vzn33XdfoWKBnqWXAQCge0oO1atXr05dXV2WLFmSjRs3ZtKkSZk1a1Z27NjR5fyf/vSn+cAHPpBLLrkkP//5zzNnzpzMmTMnjzzySLeLB4rTywAA0H0lh+prr702CxYsSG1tbSZOnJiVK1dmyJAhWbVqVZfzv/a1r+Wd73xnPv3pT+dNb3pTvvjFL+Ytb3lLvv71r3e7eKA4vQwAAN13TCmT9+3blw0bNmTRokUdY+Xl5ampqcm6deu6XLNu3brU1dV1Gps1a1a++93vHvR9Wlpa0tLS0vG6ubk5SbJnz55Syj1AW8vvu7W+J3T3M/SU/nAskv5xPF4tx+LF9e3t7Yec2xu9/Gru46R//O4m/eN4OBad9WYvAwB9r6RQvWvXrrS2tqaqqqrTeFVVVR577LEu1zQ2NnY5v7Gx8aDvU19fn89//vMHjFdXV5dSbr9UubyvK+hfHI/9eupYPPvss6msrHzZOb3Ry6/mPk787r6UY9FZb/YyAND3SgrVvWXRokWdzoi1tbVl9+7ded3rXpeysrI+qWnPnj2prq7Otm3bMmzYsD6poT9xPPbrL8eivb09zz77bE488cQ+q+Gl+mMfJ/3n/1d/4Fh01l+OR3/rZQDg5ZUUqkeMGJEBAwakqamp03hTU1NGjx7d5ZrRo0eXND9JKioqUlFR0Wls+PDhpZR6xAwbNswfny/heOzXH47F4Z7V6o1e7s99nPSP/1/9hWPRWX84Hs5QA8ArR0kPKhs0aFCmTJmShoaGjrG2trY0NDRkxowZXa6ZMWNGp/lJ8sADDxx0PnDk6WUAAOgZJV/+XVdXl/nz52fq1KmZNm1ali9fnr1796a2tjZJMm/evIwZMyb19fVJkiuuuCIXXHBBvvrVr2b27Nm544478tBDD+XGG2/s2U8ClEQvAwBA95UcqufOnZudO3dm8eLFaWxszOTJk7NmzZqOBxht3bo15eX7T4Cfc845uf3223P11VfnH/7hH3Lqqafmu9/9bs4444ye+xS9oKKiIkuWLDngctajleOx3yv1WOjlV9b/ryPBsejM8QAAiihr950dAAAAUEhJ91QDAAAA+wnVAAAAUJBQDQAAAAUJ1QAAAFCQUH0YHnzwwVx00UU58cQTU1ZWlu9+97t9XVKfqK+vz9lnn51jjz02o0aNypw5c7J58+a+LuuIu/7663PmmWdm2LBhGTZsWGbMmJHvf//7fV0WJdLH++llvQwA9Byh+jDs3bs3kyZNyooVK/q6lD71ox/9KJdddll+9rOf5YEHHsgf//jHvOMd78jevXv7urQj6qSTTsrSpUuzYcOGPPTQQ3n729+e97znPfnFL37R5fyysrJs2bKld4vkkPTxfnpZLwMAPcdXapWorKwsd999d+bMmdPXpfS5nTt3ZtSoUfnRj36U888/v6/L6VXHH398li1blksuueSAn5WVleXJJ5/MuHHjer8wDos+7kwv62UAoLhj+roAXrmam5uTvPBH6dGitbU1d955Z/bu3ZsZM2b0dTnQI/SyXgYAihOqKaStrS2f/OQnc+655+aMM87o63KOuIcffjgzZszI888/n6FDh+buu+/OxIkT+7os6Da9rJcBgO5xTzWFXHbZZXnkkUdyxx139HUpveKNb3xjNm3alP/6r//KJz7xicyfPz+PPvpokuRd73pXhg4d2rElyemnn97x+vTTT+/L0uFl6WW9DAB0j3uqS+RezGThwoW555578uCDD+b1r399X5fTJ2pqajJ+/PjccMMN2b59e/7whz90/OzUU0/N2rVrM2bMmCTJwIEDM3bs2L4qlS7o4xfoZb0MAHSfy785bO3t7bn88stz9913Z+3atUftH+HJC5fMtrS0JEnHH9wvNXbsWA83ot/Sy/vpZQCgu4Tqw/Dcc8/l8ccf73j95JNPZtOmTTn++ONz8skn92Flveuyyy7L7bffnnvuuSfHHntsGhsbkySVlZV5zWte08fVHTmLFi3Ku971rpx88sl59tlnc/vtt2ft2rW5//77+7o0SqCP99PLehkA6Dku/z4Ma9euzdve9rYDxufPn59vfvObvV9QHykrK+ty/Oabb86HP/zh3i2mF11yySVpaGjI008/ncrKypx55pm58sorc+GFF3Y539fw9E/6eD+9rJcBgJ4jVAMAAEBBnv4NAAAABQnVAAAAUJBQDQAAAAUJ1QAAAFCQUA0AAAAFCdUAAABQkFANAAAABQnVAAAAUJBQDQAAAAUJ1QAAAFCQUA0AAAAFCdUAAABQ0P8D6M85giykOT8AAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# ----- WON'T BE TESTED -----\n",
"# the code below is beyond what will be tested and is provided for the purpose \n",
"# of demonstrating examples of visualizations that achieve different goals\n",
"\n",
"# using \"matplotlib\" to create \"subplots\" - will briefly cover in Week 10\n",
"# ustack provinces instead of responses\n",
"prov_kids14_dist_unstacked_prov_df = prov_kids14_dist_df.unstack(level=0)\n",
"prov_kids14_dist_with_ch14_df = prov_kids14_dist_unstacked_prov_df.loc[[1, 2, 3]] # only compare the distribution with 1 or more children\n",
"prov_kids14_dist_with_ch14_df = prov_kids14_dist_with_ch14_df / prov_kids14_dist_with_ch14_df.sum(axis=0) # get proportions\n",
"# prov_kids14_dist_with_ch14_df.loc[1].sort_values() # check the order by # participants with 1 child < 14\n",
"\n",
"import matplotlib.pyplot as plt\n",
"fig, axes = plt.subplots(nrows=3, ncols=4, figsize = (12,12))\n",
"# row 1, column 1\n",
"ax = axes[0][0]\n",
"prov_kids14_dist_with_ch14_df[\"Quebec\"].plot(ax=ax, kind=\"bar\", rot=0)\n",
"ax.set_title(\"Quebec\")\n",
"ax.set_xticklabels([\"1\", \"2\", \"3+\"])\n",
"ax.set_xlabel(\"\")\n",
"ax.set_ylim([0, 0.6])\n",
"\n",
"# row 1, column 2\n",
"ax = axes[0][1]\n",
"prov_kids14_dist_with_ch14_df[\"Saskatchewan\"].plot(ax=ax, kind=\"bar\", rot=0)\n",
"ax.set_title(\"Saskatchewan\")\n",
"ax.set_xticklabels([\"1\", \"2\", \"3+\"])\n",
"ax.set_xlabel(\"\")\n",
"ax.set_ylim([0, 0.6])\n",
"\n",
"# row 1, column 3\n",
"ax = axes[0][2]\n",
"prov_kids14_dist_with_ch14_df[\"New Brunswick\"].plot(ax=ax, kind=\"bar\", rot=0)\n",
"ax.set_title(\"New Brunswick\")\n",
"ax.set_xticklabels([\"1\", \"2\", \"3+\"])\n",
"ax.set_xlabel(\"\")\n",
"ax.set_ylim([0, 0.6])\n",
"\n",
"# row 1, column 4\n",
"ax = axes[0][3]\n",
"prov_kids14_dist_with_ch14_df[\"Alberta\"].plot(ax=ax, kind=\"bar\", rot=0)\n",
"ax.set_title(\"Alberta\")\n",
"ax.set_xticklabels([\"1\", \"2\", \"3+\"])\n",
"ax.set_xlabel(\"\")\n",
"ax.set_ylim([0, 0.6])\n",
"\n",
"# row 2, column 1\n",
"ax = axes[1][0]\n",
"prov_kids14_dist_with_ch14_df[\"Manitoba\"].plot(ax=ax, kind=\"bar\", rot=0)\n",
"ax.set_title(\"Manitoba\")\n",
"ax.set_xticklabels([\"1\", \"2\", \"3+\"])\n",
"ax.set_xlabel(\"\")\n",
"ax.set_ylim([0, 0.6])\n",
"\n",
"# row 2, column 2\n",
"ax = axes[1][1]\n",
"prov_kids14_dist_with_ch14_df[\"Nova Scotia\"].plot(ax=ax, kind=\"bar\", rot=0)\n",
"ax.set_title(\"Nova Scotia\")\n",
"ax.set_xticklabels([\"1\", \"2\", \"3+\"])\n",
"ax.set_xlabel(\"\")\n",
"ax.set_ylim([0, 0.6])\n",
"\n",
"# row 2, column 3\n",
"ax = axes[1][2]\n",
"prov_kids14_dist_with_ch14_df[\"British Columbia\"].plot(ax=ax, kind=\"bar\", rot=0)\n",
"ax.set_title(\"British Columbia\")\n",
"ax.set_xticklabels([\"1\", \"2\", \"3+\"])\n",
"ax.set_xlabel(\"\")\n",
"ax.set_ylim([0, 0.6])\n",
"\n",
"# row 2, column 4\n",
"ax = axes[1][3]\n",
"prov_kids14_dist_with_ch14_df[\"Ontario\"].plot(ax=ax, kind=\"bar\", rot=0)\n",
"ax.set_title(\"Ontario\")\n",
"ax.set_xticklabels([\"1\", \"2\", \"3+\"])\n",
"ax.set_xlabel(\"\")\n",
"ax.set_ylim([0, 0.6])\n",
"\n",
"# row 3, column 1\n",
"ax = axes[2][0]\n",
"prov_kids14_dist_with_ch14_df[\"Prince Edward Island\"].plot(ax=ax, kind=\"bar\", rot=0)\n",
"ax.set_title(\"Prince Edward Island\")\n",
"ax.set_xticklabels([\"1\", \"2\", \"3+\"])\n",
"ax.set_xlabel(\"\")\n",
"ax.set_ylim([0, 0.6])\n",
"\n",
"# row 3, column 2\n",
"ax = axes[2][1]\n",
"prov_kids14_dist_with_ch14_df[\"NL\"].plot(ax=ax, kind=\"bar\", rot=0)\n",
"ax.set_title(\"NL\")\n",
"ax.set_xticklabels([\"1\", \"2\", \"3+\"])\n",
"ax.set_xlabel(\"\")\n",
"ax.set_ylim([0, 0.6])\n",
"\n",
"fig.delaxes(axes[2][2])\n",
"fig.delaxes(axes[2][3])"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## Summarizing the distribution of a quantitative variable"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"`dur01` is time spent sleeping, resting, etc. \n",
"\n",
"```\n",
"dur01 Duration - Sleeping, resting, relaxing, sick in bed\n",
"\n",
" VALUE LABEL\n",
" 0 No time spent doing this activity\n",
" 9996 Valid skip\n",
" 9997 Don't know\n",
" 9998 Refusal\n",
" 9999 Not stated\n",
"\n",
" Data type: numeric\n",
" Missing-data codes: 9996-9999\n",
" Record/columns: 1/65-68\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"text/plain": [
"dtype('float64')"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Sleepduration = prov_data_df[\"Sleep duration (hours)\"]\n",
"\n",
"print(type(Sleepduration))\n",
"\n",
"Sleepduration.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"count 17390.000000\n",
"mean 8.706552\n",
"std 2.217733\n",
"min 0.000000\n",
"25% 7.500000\n",
"50% 8.500000\n",
"75% 9.750000\n",
"max 24.000000\n",
"Name: Sleep duration (hours), dtype: float64"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Sleepduration.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"The distributions of quantitative variables are often described as:\n",
"\n",
"- a measure of **centre** such as mean, median, and mode\n",
"\n",
"- a measure of **spread** such as standard deviation and inter-quartile range\n",
"\n",
"- a measure of **range** - the largest value minus the smallest value (or max - min)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## Quantiles\n",
"\n",
"- The median value is the 50% quantile. 50% of the values fall below this value. The median is also called the second quartile.\n",
"\n",
"- The 25% quantile is the value where 25% of the values fall below. This is often the first quartile (Q1) \n",
"\n",
"- The 75% quantile is the value where 75% of the values fall below. This is often the third quartile (Q3)\n",
"\n",
"- There are 17390 values. If we sort sleep duration values from largest to smallest then find the value in the middle (17390 / 2 = 8695) then that value is the median."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## Variation\n",
"\n",
"- One of the most important concepts in statistical reasoning.\n",
"\n",
"- Standard deviation is average deviation from the mean. **Large** values mean large variation and **small** values mean small variation. \n",
"\n",
"- Small samples often have large variation, so estimating a statistic from a small sample is usually less reliable."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## Question\n",
"\n",
"A certain town is served by two hospitals. In the larger hospital about 45 babies are born each day, and in the smaller hospital about 15 babies are born each day. As you know, about 50% of all babies are boys. However, the exact percentage varies from day to day. Sometimes it may be higher than 50%, sometimes lower.\n",
"\n",
"\n",
"For a period of 1 year, each hospital recorded the days on which more than 60% of the babies born were boys. Which hospital do you think recorded more such days?\n",
"\n",
"- The larger hospital\n",
"- The smaller hospital\n",
"- About the same (that is, within 5% of each other) "
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Histograms\n",
"\n",
"Histograms display the frequency distribution of a quantitative variable."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAINCAYAAAA5smn/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4j0lEQVR4nO3de3iMd/7/8dcQkwQ5iDSnIlLUoU5FkSrbVlYsaxHf3dqyaFN6iBYptr5fpx4VpQ7V2m5bh/3Sqt3oWrZU41QatEG1moaqNro5kCJpSCKS+/dHv+ZnGnWIJHfk83xc11yXue9P7nlP5prd5957z8RhWZYlAAAAwFA17B4AAAAAsBNBDAAAAKMRxAAAADAaQQwAAACjEcQAAAAwGkEMAAAAoxHEAAAAMBpBDAAAAKN52D3AjaCkpETp6eny8fGRw+GwexwAAAD8jGVZ+vHHHxUWFqYaNa7tnC9BfBXS09PVsGFDu8cAAADAFRw7dkwNGjS4pp8hiK+Cj4+PpJ9+wb6+vjZPAwAAgJ/Lzc1Vw4YNXd12LQjiq3DhMglfX1+CGAAAoAory+WtfKgOAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNA+7BwBw40pLS1N2drbdY1SYwMBANWrUyO4xAAAVjCAGUCZpaWlq0aKF8vPz7R6lwnh7e+urr74iigGgmiOIAZRJdna28vPzFRMTo8DAQLvHKXfZ2dlKSEhQdnY2QQwA1RxBDOC6BAYGKiwszO4xAAAoMz5UBwAAAKMRxAAAADAaQQwAAACjEcQAAAAwGkEMAAAAoxHEAAAAMBpBDAAAAKMRxAAAADAaQQwAAACjEcQAAAAwGkEMAAAAoxHEAAAAMBpBDAAAAKMRxAAAADAaQQwAAACjEcQAAAAwGkEMAAAAoxHEAAAAMBpBDAAAAKMRxAAAADAaQQwAAACjEcQAAAAwGkEMAAAAoxHEAAAAMBpBDAAAAKMRxAAAADAaQQwAAACjEcQAAAAwGkEMAAAAoxHEAAAAMBpBDAAAAKMRxAAAADAaQQwAAACjEcQAAAAwGkEMAAAAoxHEAAAAMBpBDAAAAKMRxAAAADAaQQwAAACjEcQAAAAwGkEMAAAAoxHEAAAAMBpBDAAAAKMRxAAAADAaQQwAAACjEcQAAAAwGkEMAAAAoxHEAAAAMBpBDAAAAKMRxAAAADCarUFcXFysKVOmKCIiQt7e3mrSpImeffZZWZblWmNZlqZOnarQ0FB5e3srKipKhw8fdjvOyZMnNWTIEPn6+srf31+xsbHKy8tzW3PgwAF1795dXl5eatiwoWbNmlUpzxEAAABVm61BPHPmTL322mt65ZVXlJKSopkzZ2rWrFlauHCha82sWbO0YMECLV68WLt371adOnUUHR2tgoIC15ohQ4bo4MGD2rRpk9atW6ft27dr1KhRrv25ubnq1auXwsPDlZycrNmzZ2v69Ol6/fXXK/X5AgAAoOrxsPPBP/74Y/Xv3199+/aVJDVu3Fhvv/229uzZI+mns8Pz5s3T5MmT1b9/f0nS8uXLFRwcrPfee0+DBw9WSkqKNmzYoE8++USdOnWSJC1cuFB9+vTRSy+9pLCwMK1YsULnzp3TW2+9JafTqdtuu0379+/X3Llz3cIZAAAA5rH1DPGdd96pxMREHTp0SJL02WefaceOHfrNb34jSTp69KgyMzMVFRXl+hk/Pz916dJFSUlJkqSkpCT5+/u7YliSoqKiVKNGDe3evdu1pkePHnI6na410dHRSk1N1alTp0rNVVhYqNzcXLcbAAAAqidbzxA/9dRTys3NVYsWLVSzZk0VFxfr+eef15AhQyRJmZmZkqTg4GC3nwsODnbty8zMVFBQkNt+Dw8PBQQEuK2JiIgodYwL++rVq+e2b8aMGXr66afL6VkCAACgKrP1DPG7776rFStWaOXKldq7d6+WLVuml156ScuWLbNzLE2aNEk5OTmu27Fjx2ydBwAAABXH1jPEEyZM0FNPPaXBgwdLktq0aaPvvvtOM2bM0PDhwxUSEiJJysrKUmhoqOvnsrKy1L59e0lSSEiIjh8/7nbc8+fP6+TJk66fDwkJUVZWltuaC/cvrLmYp6enPD09y+dJAgAAoEqz9Qzx2bNnVaOG+wg1a9ZUSUmJJCkiIkIhISFKTEx07c/NzdXu3bsVGRkpSYqMjNTp06eVnJzsWrN582aVlJSoS5curjXbt29XUVGRa82mTZvUvHnzUpdLAAAAwCy2BnG/fv30/PPPa/369fr222+1Zs0azZ07VwMHDpQkORwOjR07Vs8995zWrl2rzz//XMOGDVNYWJgGDBggSWrZsqV69+6tkSNHas+ePdq5c6dGjx6twYMHKywsTJJ0//33y+l0KjY2VgcPHtSqVas0f/58xcfH2/XUAQAAUEXYesnEwoULNWXKFD322GM6fvy4wsLC9PDDD2vq1KmuNRMnTtSZM2c0atQonT59WnfddZc2bNggLy8v15oVK1Zo9OjR6tmzp2rUqKFBgwZpwYIFrv1+fn764IMPFBcXp44dOyowMFBTp07lK9cAAAAgh3Xxn4XDJeXm5srPz085OTny9fW1exygSti7d686duyoUaNGuf7fmOokPT1dr7/+upKTk9WhQwe7xwEAXMH19Jqtl0wAAAAAdiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARrM9iP/zn/9o6NChql+/vry9vdWmTRt9+umnrv2WZWnq1KkKDQ2Vt7e3oqKidPjwYbdjnDx5UkOGDJGvr6/8/f0VGxurvLw8tzUHDhxQ9+7d5eXlpYYNG2rWrFmV8vwAAABQtdkaxKdOnVK3bt1Uq1Ytvf/++/ryyy81Z84c1atXz7Vm1qxZWrBggRYvXqzdu3erTp06io6OVkFBgWvNkCFDdPDgQW3atEnr1q3T9u3bNWrUKNf+3Nxc9erVS+Hh4UpOTtbs2bM1ffp0vf7665X6fAEAAFD1eNj54DNnzlTDhg21ZMkS17aIiAjXvy3L0rx58zR58mT1799fkrR8+XIFBwfrvffe0+DBg5WSkqINGzbok08+UadOnSRJCxcuVJ8+ffTSSy8pLCxMK1as0Llz5/TWW2/J6XTqtttu0/79+zV37ly3cAYAAIB5bD1DvHbtWnXq1Em///3vFRQUpNtvv11//etfXfuPHj2qzMxMRUVFubb5+fmpS5cuSkpKkiQlJSXJ39/fFcOSFBUVpRo1amj37t2uNT169JDT6XStiY6OVmpqqk6dOlVqrsLCQuXm5rrdAAAAUD3ZGsTffPONXnvtNTVr1kwbN27Uo48+qieeeELLli2TJGVmZkqSgoOD3X4uODjYtS8zM1NBQUFu+z08PBQQEOC25lLHuPgxLjZjxgz5+fm5bg0bNiyHZwsAAICqyNYgLikpUYcOHfTCCy/o9ttv16hRozRy5EgtXrzYzrE0adIk5eTkuG7Hjh2zdR4AAABUHFuDODQ0VK1atXLb1rJlS6WlpUmSQkJCJElZWVlua7Kyslz7QkJCdPz4cbf958+f18mTJ93WXOoYFz/GxTw9PeXr6+t2AwAAQPVkaxB369ZNqampbtsOHTqk8PBwST99wC4kJESJiYmu/bm5udq9e7ciIyMlSZGRkTp9+rSSk5NdazZv3qySkhJ16dLFtWb79u0qKipyrdm0aZOaN2/u9o0WAAAAMI+tQTxu3Djt2rVLL7zwgr7++mutXLlSr7/+uuLi4iRJDodDY8eO1XPPPae1a9fq888/17BhwxQWFqYBAwZI+umMcu/evTVy5Ejt2bNHO3fu1OjRozV48GCFhYVJku6//345nU7Fxsbq4MGDWrVqlebPn6/4+Hi7njoAAACqCFu/du2OO+7QmjVrNGnSJD3zzDOKiIjQvHnzNGTIENeaiRMn6syZMxo1apROnz6tu+66Sxs2bJCXl5drzYoVKzR69Gj17NlTNWrU0KBBg7RgwQLXfj8/P33wwQeKi4tTx44dFRgYqKlTp/KVawAAAJDDsizL7iGqutzcXPn5+SknJ4friYH/s3fvXnXs2FGjRo1y/b8x1Ul6erpef/11JScnq0OHDnaPAwC4guvpNdv/dDMAAABgJ4IYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYrUxB/88035T0HAAAAYIsyBXHTpk11zz336H//939VUFBQ3jMBAAAAlaZMQbx37161bdtW8fHxCgkJ0cMPP6w9e/aU92wAAABAhStTELdv317z589Xenq63nrrLWVkZOiuu+5S69atNXfuXJ04caK85wQAAAAqxHV9qM7Dw0MxMTFavXq1Zs6cqa+//lrjx49Xw4YNNWzYMGVkZJTXnAAAAECFuK4g/vTTT/XYY48pNDRUc+fO1fjx43XkyBFt2rRJ6enp6t+/f3nNCQAAAFQIj7L80Ny5c7VkyRKlpqaqT58+Wr58ufr06aMaNX7q64iICC1dulSNGzcuz1kBAACAclemIH7ttdf04IMPasSIEQoNDb3kmqCgIL355pvXNRwAAABQ0coUxIcPH77iGqfTqeHDh5fl8AAAAEClKdM1xEuWLNHq1atLbV+9erWWLVt23UMBAAAAlaVMQTxjxgwFBgaW2h4UFKQXXnjhuocCAAAAKkuZgjgtLU0RERGltoeHhystLe26hwIAAAAqS5mCOCgoSAcOHCi1/bPPPlP9+vWveygAAACgspQpiP/4xz/qiSee0JYtW1RcXKzi4mJt3rxZY8aM0eDBg8t7RgAAAKDClOlbJp599ll9++236tmzpzw8fjpESUmJhg0bxjXEAAAAuKGUKYidTqdWrVqlZ599Vp999pm8vb3Vpk0bhYeHl/d8AAAAQIUqUxBfcOutt+rWW28tr1kAAACASlemIC4uLtbSpUuVmJio48ePq6SkxG3/5s2by2U4AAAAoKKVKYjHjBmjpUuXqm/fvmrdurUcDkd5zwUAAABUijIF8TvvvKN3331Xffr0Ke95AAAAgEpVpq9dczqdatq0aXnPAgAAAFS6MgXxk08+qfnz58uyrPKeBwAAAKhUZbpkYseOHdqyZYvef/993XbbbapVq5bb/oSEhHIZDgAAAKhoZQpif39/DRw4sLxnAQAAACpdmYJ4yZIl5T0HAAAAYIsyXUMsSefPn9eHH36ov/zlL/rxxx8lSenp6crLyyu34QAAAICKVqYzxN9995169+6ttLQ0FRYW6te//rV8fHw0c+ZMFRYWavHixeU9JwAAAFAhynSGeMyYMerUqZNOnTolb29v1/aBAwcqMTGx3IYDAAAAKlqZzhB/9NFH+vjjj+V0Ot22N27cWP/5z3/KZTAAAACgMpTpDHFJSYmKi4tLbf/+++/l4+Nz3UMBAAAAlaVMQdyrVy/NmzfPdd/hcCgvL0/Tpk3jzzkDAADghlKmSybmzJmj6OhotWrVSgUFBbr//vt1+PBhBQYG6u233y7vGQEAAIAKU6YgbtCggT777DO98847OnDggPLy8hQbG6shQ4a4fcgOAAAAqOrKFMSS5OHhoaFDh5bnLAAAAEClK1MQL1++/LL7hw0bVqZhAAAAgMpWpiAeM2aM2/2ioiKdPXtWTqdTtWvXJogBAABwwyjTt0ycOnXK7ZaXl6fU1FTdddddfKgOAAAAN5QyBfGlNGvWTC+++GKps8cAAABAVVZuQSz99EG79PT08jwkAAAAUKHKdA3x2rVr3e5blqWMjAy98sor6tatW7kMBgAAAFSGMgXxgAED3O47HA7ddNNNuvfeezVnzpzymAsAAACoFGUK4pKSkvKeAwAAALBFuV5DDAAAANxoynSGOD4+/qrXzp07tywPAQAAAFSKMgXxvn37tG/fPhUVFal58+aSpEOHDqlmzZrq0KGDa53D4SifKQEAAIAKUqYg7tevn3x8fLRs2TLVq1dP0k9/rOOBBx5Q9+7d9eSTT5brkAAAAEBFKdM1xHPmzNGMGTNcMSxJ9erV03PPPce3TAAAAOCGUqYgzs3N1YkTJ0ptP3HihH788cfrHgoAAACoLGUK4oEDB+qBBx5QQkKCvv/+e33//ff6xz/+odjYWMXExJT3jAAAAECFKdM1xIsXL9b48eN1//33q6io6KcDeXgoNjZWs2fPLtcBAQAAgIpUpiCuXbu2Xn31Vc2ePVtHjhyRJDVp0kR16tQp1+EAAACAinZdf5gjIyNDGRkZatasmerUqSPLssprLgAAAKBSlCmIf/jhB/Xs2VO33nqr+vTpo4yMDElSbGwsX7kGAACAG0qZgnjcuHGqVauW0tLSVLt2bdf2++67Txs2bCi34QAAAICKVqZriD/44ANt3LhRDRo0cNverFkzfffdd+UyGAAAAFAZynSG+MyZM25nhi84efKkPD09r3soAAAAoLKUKYi7d++u5cuXu+47HA6VlJRo1qxZuueee8ptOAAAAKCilemSiVmzZqlnz5769NNPde7cOU2cOFEHDx7UyZMntXPnzvKeEQAAAKgwZTpD3Lp1ax06dEh33XWX+vfvrzNnzigmJkb79u1TkyZNyntGAAAAoMJc8xnioqIi9e7dW4sXL9b//M//VMRMAAAAQKW55jPEtWrV0oEDBypiFgAAAKDSlemSiaFDh+rNN98s71kAAACASlemD9WdP39eb731lj788EN17NhRderUcds/d+7cchkOAAAAqGjXFMTffPONGjdurC+++EIdOnSQJB06dMhtjcPhKL/pAAAAgAp2TUHcrFkzZWRkaMuWLZJ++lPNCxYsUHBwcIUMBwAAAFS0a7qG2LIst/vvv/++zpw5U64DAQAAAJWpTB+qu+DngQwAAADcaK4piB0OR6lrhLlmGAAAADeya75kYsSIEYqJiVFMTIwKCgr0yCOPuO5fuJXFiy++KIfDobFjx7q2FRQUKC4uTvXr11fdunU1aNAgZWVluf1cWlqa+vbtq9q1aysoKEgTJkzQ+fPn3dZs3bpVHTp0kKenp5o2baqlS5eWaUYAAABUP9f0obrhw4e73R86dGi5DPHJJ5/oL3/5i9q2beu2fdy4cVq/fr1Wr14tPz8/jR49WjExMdq5c6ckqbi4WH379lVISIg+/vhjZWRkaNiwYapVq5ZeeOEFSdLRo0fVt29fPfLII1qxYoUSExP10EMPKTQ0VNHR0eUyPwAAAG5c1xTES5YsKfcB8vLyNGTIEP31r3/Vc88959qek5OjN998UytXrtS9997revyWLVtq165d6tq1qz744AN9+eWX+vDDDxUcHKz27dvr2Wef1Z///GdNnz5dTqdTixcvVkREhObMmSNJatmypXbs2KGXX36ZIAYAAMD1faiuPMTFxalv376Kiopy256cnKyioiK37S1atFCjRo2UlJQkSUpKSlKbNm3cvvYtOjpaubm5OnjwoGvNz48dHR3tOgYAAADMVqa/VFde3nnnHe3du1effPJJqX2ZmZlyOp3y9/d32x4cHKzMzEzXmp9/B/KF+1dak5ubq/z8fHl7e5d67MLCQhUWFrru5+bmXvuTAwAAwA3BtjPEx44d05gxY7RixQp5eXnZNcYlzZgxQ35+fq5bw4YN7R4JAAAAFcS2IE5OTtbx48fVoUMHeXh4yMPDQ9u2bdOCBQvk4eGh4OBgnTt3TqdPn3b7uaysLIWEhEiSQkJCSn3rxIX7V1rj6+t7ybPDkjRp0iTl5OS4bseOHSuPpwwAAIAqyLYg7tmzpz7//HPt37/fdevUqZOGDBni+netWrWUmJjo+pnU1FSlpaUpMjJSkhQZGanPP/9cx48fd63ZtGmTfH191apVK9eai49xYc2FY1yKp6enfH193W4AAAConmy7htjHx0etW7d221anTh3Vr1/ftT02Nlbx8fEKCAiQr6+vHn/8cUVGRqpr166SpF69eqlVq1b605/+pFmzZikzM1OTJ09WXFycPD09JUmPPPKIXnnlFU2cOFEPPvigNm/erHfffVfr16+v3CcMAACAKsnWD9Vdycsvv6waNWpo0KBBKiwsVHR0tF599VXX/po1a2rdunV69NFHFRkZqTp16mj48OF65plnXGsiIiK0fv16jRs3TvPnz1eDBg30xhtv8JVrAAAAkFTFgnjr1q1u9728vLRo0SItWrToF38mPDxc//73vy973Lvvvlv79u0rjxEBAABQzdj+PcQAAACAnQhiAAAAGI0gBgAAgNEIYgAAABiNIAYAAIDRCGIAAAAYjSAGAACA0QhiAAAAGI0gBgAAgNEIYgAAABiNIAYAAIDRCGIAAAAYjSAGAACA0QhiAAAAGI0gBgAAgNEIYgAAABiNIAYAAIDRCGIAAAAYjSAGAACA0QhiAAAAGI0gBgAAgNE87B4AAKqylJQUu0eoMIGBgWrUqJHdYwCA7QhiALiEvLw8ORwODR061O5RKoy3t7e++uorohiA8QhiALiEgoICWZalmJgYBQYG2j1OucvOzlZCQoKys7MJYgDGI4gB4DICAwMVFhZm9xgAgArEh+oAAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEbjTzcDFSQtLU3Z2dl2j1FhUlJS7B4BAIByQRADFSAtLU0tWrRQfn6+3aMAAIArIIiBCpCdna38/HzFxMQoMDDQ7nEqxOHDh7Vlyxa7xwAA4LoRxEAFCgwMVFhYmN1jVIjqfDkIAMAsfKgOAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0W4N4xowZuuOOO+Tj46OgoCANGDBAqampbmsKCgoUFxen+vXrq27duho0aJCysrLc1qSlpalv376qXbu2goKCNGHCBJ0/f95tzdatW9WhQwd5enqqadOmWrp0aUU/PQAAANwAbA3ibdu2KS4uTrt27dKmTZtUVFSkXr166cyZM64148aN07/+9S+tXr1a27ZtU3p6umJiYlz7i4uL1bdvX507d04ff/yxli1bpqVLl2rq1KmuNUePHlXfvn11zz33aP/+/Ro7dqweeughbdy4sVKfLwAAAKoeDzsffMOGDW73ly5dqqCgICUnJ6tHjx7KycnRm2++qZUrV+ree++VJC1ZskQtW7bUrl271LVrV33wwQf68ssv9eGHHyo4OFjt27fXs88+qz//+c+aPn26nE6nFi9erIiICM2ZM0eS1LJlS+3YsUMvv/yyoqOjK/15AwAAoOqoUtcQ5+TkSJICAgIkScnJySoqKlJUVJRrTYsWLdSoUSMlJSVJkpKSktSmTRsFBwe71kRHRys3N1cHDx50rbn4GBfWXDjGzxUWFio3N9ftBgAAgOqpygRxSUmJxo4dq27duql169aSpMzMTDmdTvn7+7utDQ4OVmZmpmvNxTF8Yf+FfZdbk5ubq/z8/FKzzJgxQ35+fq5bw4YNy+U5AgAAoOqpMkEcFxenL774Qu+8847do2jSpEnKyclx3Y4dO2b3SAAAAKggtl5DfMHo0aO1bt06bd++XQ0aNHBtDwkJ0blz53T69Gm3s8RZWVkKCQlxrdmzZ4/b8S58C8XFa37+zRRZWVny9fWVt7d3qXk8PT3l6elZLs8NAAAAVZutZ4gty9Lo0aO1Zs0abd68WREREW77O3bsqFq1aikxMdG1LTU1VWlpaYqMjJQkRUZG6vPPP9fx48ddazZt2iRfX1+1atXKtebiY1xYc+EYAAAAMJetZ4jj4uK0cuVK/fOf/5SPj4/rml8/Pz95e3vLz89PsbGxio+PV0BAgHx9ffX4448rMjJSXbt2lST16tVLrVq10p/+9CfNmjVLmZmZmjx5suLi4lxneR955BG98sormjhxoh588EFt3rxZ7777rtavX2/bcwcAAEDVYOsZ4tdee005OTm6++67FRoa6rqtWrXKtebll1/Wb3/7Ww0aNEg9evRQSEiIEhISXPtr1qypdevWqWbNmoqMjNTQoUM1bNgwPfPMM641ERERWr9+vTZt2qR27dppzpw5euONN/jKNQAAANh7htiyrCuu8fLy0qJFi7Ro0aJfXBMeHq5///vflz3O3XffrX379l3zjAAAAKjeqsy3TAAAAAB2IIgBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARvOwewAAgH1SUlLsHqFCBQYGqlGjRnaPAaCKI4gBwEB5eXlyOBwaOnSo3aNUKG9vb3311VdEMYDLIogBwEAFBQWyLEsxMTEKDAy0e5wKkZ2drYSEBGVnZxPEAC6LIAYAgwUGBiosLMzuMQDAVnyoDgAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABGI4gBAABgNIIYAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0D7sHgLnS0tKUnZ1t9xgVIiUlxe4RAADAVSKIYYu0tDS1aNFC+fn5do8CAAAMRxDDFtnZ2crPz1dMTIwCAwPtHqfcHT58WFu2bLF7DAAAcBUIYtgqMDBQYWFhdo9R7qrrpSAAAFRHfKgOAAAARiOIAQAAYDSCGAAAAEYjiAEAAGA0ghgAAABG41smAADVWnX+QzmBgYFq1KiR3WMANzyCGABQLeXl5cnhcGjo0KF2j1JhvL299dVXXxHFwHUiiAEA1VJBQYEsy6q2fwAoOztbCQkJys7OJoiB60QQAwCqter6B4AAlB8+VAcAAACjEcQAAAAwGpdMVGFpaWnKzs62e4wKUZ0/9Q0AAG4sRgXxokWLNHv2bGVmZqpdu3ZauHChOnfubPdYl5SWlqYWLVooPz/f7lEAAFVYdT7BwNfKobIYE8SrVq1SfHy8Fi9erC5dumjevHmKjo5WamqqgoKC7B6vlOzsbOXn51fbT0cfPnxYW7ZssXsMALhhmfC1cp6envrHP/6h0NBQu0epMER/1WBMEM+dO1cjR47UAw88IElavHix1q9fr7feektPPfWUzdP9sur66ejqeikIAFSW6v61cmlpadq4caN++9vf2j1Kharu0X+jBL8RQXzu3DklJydr0qRJrm01atRQVFSUkpKSSq0vLCxUYWGh635OTo4kKTc3t+KH/T95eXmSpIyMDJ07d67SHreynDhxQhLP70ZW3Z8jz+/GV92f44XnV1RUVC2f35kzZ2RZlu688075+vraPU6FOHHihJKTk6t19Ht5eenTTz9Vw4YNK/yxLnSaZVnX/LMOqyw/dYNJT0/XzTffrI8//liRkZGu7RMnTtS2bdu0e/dut/XTp0/X008/XdljAgAA4DodO3ZMDRo0uKafMeIM8bWaNGmS4uPjXfdLSkp08uRJ1a9fXw6Ho1JmyM3NVcOGDXXs2LFq+7+MTcNrWv3wmlZPvK7VD69p9fTz19WyLP34449lutTUiCAODAxUzZo1lZWV5bY9KytLISEhpdZ7enrK09PTbZu/v39FjviLfH19efNWM7ym1Q+vafXE61r98JpWTxe/rn5+fmU6hhF/mMPpdKpjx45KTEx0bSspKVFiYqLbJRQAAAAwjxFniCUpPj5ew4cPV6dOndS5c2fNmzdPZ86ccX3rBAAAAMxkTBDfd999OnHihKZOnarMzEy1b99eGzZsUHBwsN2jXZKnp6emTZtW6tIN3Lh4TasfXtPqide1+uE1rZ7K83U14lsmAAAAgF9ixDXEAAAAwC8hiAEAAGA0ghgAAABGI4gBAABgNIK4Clq0aJEaN24sLy8vdenSRXv27LF7JFyH6dOny+FwuN1atGhh91i4Btu3b1e/fv0UFhYmh8Oh9957z22/ZVmaOnWqQkND5e3traioKB0+fNieYXHVrvS6jhgxotR7t3fv3vYMi6syY8YM3XHHHfLx8VFQUJAGDBig1NRUtzUFBQWKi4tT/fr1VbduXQ0aNKjUH+5C1XE1r+ndd99d6r36yCOPXNPjEMRVzKpVqxQfH69p06Zp7969ateunaKjo3X8+HG7R8N1uO2225SRkeG67dixw+6RcA3OnDmjdu3aadGiRZfcP2vWLC1YsECLFy/W7t27VadOHUVHR6ugoKCSJ8W1uNLrKkm9e/d2e+++/fbblTghrtW2bdsUFxenXbt2adOmTSoqKlKvXr105swZ15px48bpX//6l1avXq1t27YpPT1dMTExNk6Ny7ma11SSRo4c6fZenTVr1rU9kIUqpXPnzlZcXJzrfnFxsRUWFmbNmDHDxqlwPaZNm2a1a9fO7jFQTiRZa9ascd0vKSmxQkJCrNmzZ7u2nT592vL09LTefvttGyZEWfz8dbUsyxo+fLjVv39/W+ZB+Th+/Lglydq2bZtlWT+9N2vVqmWtXr3atSYlJcWSZCUlJdk1Jq7Bz19Ty7KsX/3qV9aYMWOu67icIa5Czp07p+TkZEVFRbm21ahRQ1FRUUpKSrJxMlyvw4cPKywsTLfccouGDBmitLQ0u0dCOTl69KgyMzPd3rd+fn7q0qUL79tqYOvWrQoKClLz5s316KOP6ocffrB7JFyDnJwcSVJAQIAkKTk5WUVFRW7v1xYtWqhRo0a8X28QP39NL1ixYoUCAwPVunVrTZo0SWfPnr2m4xrzl+puBNnZ2SouLi711/OCg4P11Vdf2TQVrleXLl20dOlSNW/eXBkZGXr66afVvXt3ffHFF/Lx8bF7PFynzMxMSbrk+/bCPtyYevfurZiYGEVEROjIkSP67//+b/3mN79RUlKSatasafd4uIKSkhKNHTtW3bp1U+vWrSX99H51Op3y9/d3W8v79cZwqddUku6//36Fh4crLCxMBw4c0J///GelpqYqISHhqo9NEAMV7De/+Y3r323btlWXLl0UHh6ud999V7GxsTZOBuByBg8e7Pp3mzZt1LZtWzVp0kRbt25Vz549bZwMVyMuLk5ffPEFn9moRn7pNR01apTr323atFFoaKh69uypI0eOqEmTJld1bC6ZqEICAwNVs2bNUp92zcrKUkhIiE1Tobz5+/vr1ltv1ddff233KCgHF96bvG+rv1tuuUWBgYG8d28Ao0eP1rp167RlyxY1aNDAtT0kJETnzp3T6dOn3dbzfq36fuk1vZQuXbpI0jW9VwniKsTpdKpjx45KTEx0bSspKVFiYqIiIyNtnAzlKS8vT0eOHFFoaKjdo6AcREREKCQkxO19m5ubq927d/O+rWa+//57/fDDD7x3qzDLsjR69GitWbNGmzdvVkREhNv+jh07qlatWm7v19TUVKWlpfF+raKu9Jpeyv79+yXpmt6rXDJRxcTHx2v48OHq1KmTOnfurHnz5unMmTN64IEH7B4NZTR+/Hj169dP4eHhSk9P17Rp01SzZk398Y9/tHs0XKW8vDy3Mw1Hjx7V/v37FRAQoEaNGmns2LF67rnn1KxZM0VERGjKlCkKCwvTgAED7BsaV3S51zUgIEBPP/20Bg0apJCQEB05ckQTJ05U06ZNFR0dbePUuJy4uDitXLlS//znP+Xj4+O6LtjPz0/e3t7y8/NTbGys4uPjFRAQIF9fXz3++OOKjIxU165dbZ4el3Kl1/TIkSNauXKl+vTpo/r16+vAgQMaN26cevToobZt2179A13Xd1SgQixcuNBq1KiR5XQ6rc6dO1u7du2yeyRch/vuu88KDQ21nE6ndfPNN1v33Xef9fXXX9s9Fq7Bli1bLEmlbsOHD7cs66evXpsyZYoVHBxseXp6Wj179rRSU1PtHRpXdLnX9ezZs1avXr2sm266yapVq5YVHh5ujRw50srMzLR7bFzGpV5PSdaSJUtca/Lz863HHnvMqlevnlW7dm1r4MCBVkZGhn1D47Ku9JqmpaVZPXr0sAICAixPT0+radOm1oQJE6ycnJxrehzH/z0YAAAAYCSuIQYAAIDRCGIAAAAYjSAGAACA0QhiAAAAGI0gBgAAgNEIYgAAABiNIAYAAIDRCGIARnE4HHrvvffsHuOSGjdurHnz5tn2+EuXLpW/v3+lPFZqaqpCQkL0448/VvpjX6vFixerX79+do8BoAIRxACqjRMnTujRRx9Vo0aN5OnpqZCQEEVHR2vnzp12j1blXCq+77vvPh06dKhSHn/SpEl6/PHH5ePjUymPdz0efPBB7d27Vx999JHdowCoIB52DwAA5WXQoEE6d+6cli1bpltuuUVZWVlKTEzUDz/8YPdolcKyLBUXF8vDo2z/0e7t7S1vb+9ynqq0tLQ0rVu3TgsXLqzwx7qS4uJiORwO1ajxy+eHnE6n7r//fi1YsEDdu3evxOkAVBbOEAOoFk6fPq2PPvpIM2fO1D333KPw8HB17txZkyZN0u9+97tf/Lljx47pD3/4g/z9/RUQEKD+/fvr22+/dVvzxhtvqGXLlvLy8lKLFi306quvuvZ9++23cjgceuedd3TnnXfKy8tLrVu31rZt2y477/Hjx9WvXz95e3srIiJCK1ascNt/4bj79+93e44Oh0Nbt26VJG3dulUOh0Pvv/++OnbsKE9PT+3YsUNHjhxR//79FRwcrLp16+qOO+7Qhx9+6DrO3Xffre+++07jxo2Tw+GQw+GQdOnLFl577TU1adJETqdTzZs319/+9je3/Q6HQ2+88YYGDhyo2rVrq1mzZlq7du1ln/u7776rdu3a6eabby61b+PGjWrZsqXq1q2r3r17KyMjw7WvpKREzzzzjBo0aCBPT0+1b99eGzZscO2/8Ps4ffq0a9v+/fvlcDhcr+mF57h27Vq1atVKnp6eSktL09atW9W5c2fVqVNH/v7+6tatm7777jvXcfr166e1a9cqPz//ss8NwI2JIAZQLdStW1d169bVe++9p8LCwqv6maKiIkVHR8vHx0cfffSRdu7c6Qqxc+fOSZJWrFihqVOn6vnnn1dKSopeeOEFTZkyRcuWLXM71oQJE/Tkk09q3759ioyMVL9+/S57ZnrEiBE6duyYtmzZor///e969dVXdfz48TI996eeekovvviiUlJS1LZtW+Xl5alPnz5KTEzUvn371Lt3b/Xr109paWmSpISEBDVo0EDPPPOMMjIy3KLzYmvWrNGYMWP05JNP6osvvtDDDz+sBx54QFu2bHFb9/TTT+sPf/iDDhw4oD59+mjIkCE6efLkL8770UcfqVOnTqW2nz17Vi+99JL+9re/afv27UpLS9P48eNd++fPn685c+bopZde0oEDBxQdHa3f/e53Onz48DX9vs6ePauZM2fqjTfe0MGDBxUQEKABAwboV7/6lQ4cOKCkpCSNGjXK9T8UJKlTp046f/68du/efU2PBeAGYQFANfH3v//dqlevnuXl5WXdeeed1qRJk6zPPvvMbY0ka82aNZZlWdbf/vY3q3nz5lZJSYlrf2FhoeXt7W1t3LjRsizLatKkibVy5Uq3Yzz77LNWZGSkZVmWdfToUUuS9eKLL7r2FxUVWQ0aNLBmzpx5yTlTU1MtSdaePXtc21JSUixJ1ssvv+x23H379rnWnDp1ypJkbdmyxbIsy9qyZYslyXrvvfeu+Lu57bbbrIULF7ruh4eHux7rgiVLllh+fn6u+3feeac1cuRItzW///3vrT59+rjuS7ImT57sup+Xl2dJst5///1fnKVdu3bWM888U+qxJVlff/21a9uiRYus4OBg1/2wsDDr+eefd/u5O+64w3rssccsy/r/v49Tp0659u/bt8+SZB09etTtcfbv3+9a88MPP1iSrK1bt/7izJZlWfXq1bOWLl162TUAbkycIQZQbQwaNEjp6elau3atevfura1bt6pDhw5aunTpJdd/9tln+vrrr+Xj4+M6wxwQEKCCggIdOXJEZ86c0ZEjRxQbG+vaX7duXT333HM6cuSI27EiIyNd//bw8FCnTp2UkpJyycdNSUmRh4eHOnbs6NrWokWLMn/Lws/Ptubl5Wn8+PFq2bKl/P39VbduXaWkpLjOEF+tlJQUdevWzW1bt27dSj2vtm3buv5dp04d+fr6XvZsd35+vry8vEptr127tpo0aeK6Hxoa6jpObm6u0tPTr2qeK3E6nW4zBwQEaMSIEYqOjla/fv00f/78S5419/b21tmzZ6/psQDcGPhQHYBqxcvLS7/+9a/161//WlOmTNFDDz2kadOmacSIEaXW5uXlqWPHjqWu35Wkm266SXl5eZKkv/71r+rSpYvb/po1a1bI/Bdc+JCXZVmubUVFRZdcW6dOHbf748eP16ZNm/TSSy+padOm8vb21n/913+5LgMpb7Vq1XK773A4VFJS8ovrAwMDderUqas6zsXP/0qu9nfm7e3tdjmEJC1ZskRPPPGENmzYoFWrVmny5MnatGmTunbt6lpz8uRJ3XTTTVc9D4AbB2eIAVRrrVq10pkzZy65r0OHDjp8+LCCgoLUtGlTt5ufn5+Cg4MVFhamb775ptT+iIgIt2Pt2rXL9e/z588rOTlZLVu2vOTjtmjRwrXmgtTUVLcPg10Ir4vPVF78AbvL2blzp0aMGKGBAweqTZs2CgkJKfVBQafTqeLi4ssep2XLlqW+sm7nzp1q1arVVc3xS26//XZ9+eWX1/Qzvr6+CgsLu+w81/M7uzDXpEmT9PHHH6t169ZauXKla9+RI0dUUFCg22+//ZrmBnBj4AwxgGrhhx9+0O9//3s9+OCDatu2rXx8fPTpp59q1qxZ6t+//yV/ZsiQIZo9e7b69+/v+vaC7777TgkJCZo4caIaNGigp59+Wk888YT8/PzUu3dvFRYW6tNPP9WpU6cUHx/vOtaiRYvUrFkztWzZUi+//LJOnTqlBx988JKP27x5c/Xu3VsPP/ywXnvtNXl4eGjs2LFuX3nm7e2trl276sUXX1RERISOHz+uyZMnX9XvolmzZkpISFC/fv3kcDg0ZcqUUmdsGzdurO3bt2vw4MHy9PRUYGBgqeNMmDBBf/jDH3T77bcrKipK//rXv5SQkOD2jRVlER0drYceekjFxcXXdKZ9woQJmjZtmpo0aaL27dtryZIl2r9/v+sMf9OmTdWwYUNNnz5dzz//vA4dOqQ5c+Zc8bhHjx7V66+/rt/97ncKCwtTamqqDh8+rGHDhrnWfPTRR7rlllvcLukAUI3YfA0zAJSLgoIC66mnnrI6dOhg+fn5WbVr17aaN29uTZ482Tp79qxrnS76UJ1lWVZGRoY1bNgwKzAw0PL09LRuueUWa+TIkVZOTo5rzYoVK6z27dtbTqfTqlevntWjRw8rISHBsqz//+G3lStXWp07d7acTqfVqlUra/PmzZedNyMjw+rbt6/l6elpNWrUyFq+fHmpD7p9+eWXVmRkpOXt7W21b9/e+uCDDy75obqLP0R2YaZ77rnH8vb2tho2bGi98sor1q9+9StrzJgxrjVJSUlW27ZtLU9PT+vCfxX8/EN1lmVZr776qnXLLbdYtWrVsm699VZr+fLlbvt//vu0LMvy8/OzlixZ8ovPvaioyAoLC7M2bNjg2napx16zZo118X9NFRcXW9OnT7duvvlmq1atWla7du1KfXhvx44dVps2bSwvLy+re/fu1urVq0t9qO7nj5OZmWkNGDDACg0NtZxOpxUeHm5NnTrVKi4udq3p1auXNWPGjF98TgBubA7LuoYLtAAAbr799ltFRERo3759at++vd3j3DAWLVqktWvXauPGjXaPckUHDx7Uvffeq0OHDsnPz8/ucQBUAC6ZAABUuocfflinT5/Wjz/+WOX/fHNGRoaWL19ODAPVGGeIAeA6cIYYAG58BDEAAACMxteuAQAAwGgEMQAAAIxGEAMAAMBoBDEAAACMRhADAADAaAQxAAAAjEYQAwAAwGgEMQAAAIxGEAMAAMBo/w/NNsdfEbj7TwAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Sleepduration_hist = Sleepduration.plot.hist(\n",
" bins=10, \n",
" edgecolor=\"black\", \n",
" color=\"grey\", \n",
" figsize = (8, 6)\n",
");\n",
"\n",
"Sleepduration_hist.set_xlabel(\"Sleep duration (hours)\");"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
"0 (7.2, 9.6]\n",
"1 (4.8, 7.2]\n",
"2 (7.2, 9.6]\n",
"3 (7.2, 9.6]\n",
"4 (7.2, 9.6]\n",
" ... \n",
"17385 (7.2, 9.6]\n",
"17386 (9.6, 12.0]\n",
"17387 (7.2, 9.6]\n",
"17388 (12.0, 14.4]\n",
"17389 (7.2, 9.6]\n",
"Name: Sleep duration (hours), Length: 17390, dtype: category\n",
"Categories (10, interval[float64, right]): [(-0.024, 2.4] < (2.4, 4.8] < (4.8, 7.2] < (7.2, 9.6] ... (14.4, 16.8] < (16.8, 19.2] < (19.2, 21.6] < (21.6, 24.0]]"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.cut(Sleepduration, bins=10)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## Boxplots \n",
"\n",
"- Another way to visualize the distribution of a quantitative variable\n",
"\n",
"- A box plot is a method for graphically depicting groups of numerical data through their quartiles. \n",
"- The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). \n",
"- The whiskers extend from the edges of box to show the range of the data. \n",
"- By default, they extend no more than 1.5 * IQR (IQR = Q3 - Q1) from the edges of the box, ending at the farthest data point within that interval. Outliers are plotted as separate dots."
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAKUCAYAAADW7K0QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIRklEQVR4nO3deXhU9d3//9dkksmegRBCEgghJIiibOLC4oJWFkUqLnWptVpb5bJIRRSrt9atVRRBsL1BS72/Wq1LW4q4FdwKGDViRVBRiyHsEBK2zGSfzMz5/eFvTmdIWCKTzDnk+biuXJ5zPu/MecN9Xff0xed8PsdhGIYhAAAAALCxuFg3AAAAAABHi2ADAAAAwPYINgAAAABsj2ADAAAAwPYINgAAAABsj2ADAAAAwPYINgAAAABsj2ADAAAAwPbiY93AgYLBoHbu3Kn09HQ5HI5YtwMAAAAgRgzDUE1NjfLy8hQXd+g5GcsFm507dyo/Pz/WbQAAAACwiG3btqlXr16HrGlTsJk5c6YWL16s//znP0pOTtbIkSP16KOPqn///mbN6NGjtXLlyojfmzx5sp566qkjukd6errZfEZGRlvaAwAAAHAM8Xq9ys/PNzPCobQp2KxcuVJTpkzRqaeeKr/fr//5n//R2LFj9fXXXys1NdWsu+GGG/Tggw+a5ykpKUd8j9DjZxkZGQQbAAAAAEe0RKVNwWbZsmUR588++6yys7O1evVqnXXWWeb1lJQU5eTktOWjAQAAAOB7O6pd0TwejyQpMzMz4voLL7ygrKwsnXTSSbrrrrtUX19/0M9oamqS1+uN+AEAAACAtvjemwcEg0FNmzZNo0aN0kknnWRe//GPf6yCggLl5eXpiy++0K9//WutX79eixcvbvVzZs6cqQceeOD7tgEAAAAAchiGYXyfX7zpppu0dOlSffDBB4fcoeBf//qXfvCDH2jDhg0qKipqMd7U1KSmpibzPLRAyOPxsMYGAAAA6MS8Xq/cbvcRZYPvNWNz880364033tD7779/2G3XTj/9dEk6aLBJTExUYmLi92kDAAAAACS1MdgYhqGpU6fqlVde0YoVK1RYWHjY31m7dq0kKTc393s1CAAAAACH06ZgM2XKFL344ot69dVXlZ6erl27dkmS3G63kpOTVV5erhdffFEXXHCBunXrpi+++EK33nqrzjrrLA0aNKhd/gAAAAAA0KY1NgfbP/qZZ57Rddddp23btuknP/mJ1q1bp7q6OuXn5+viiy/WPffcc8TrZdryHB0AAACAY1e7rbE5XAbKz8/XypUr2/KRAAAAAHDUjuo9NgAAAABgBQQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAAAAALZHsAEAAABgewQbAIDlNDQ06Oabb9a4ceN08803q6GhIdYtAQAszmEYhhHrJsJ5vV653W55PB5lZGTEuh0AQAebNGmSXn311RbXL7roIi1ZsqTjGwIAxExbsgEzNgAAywiFGpfLpTvvvFMbNmzQnXfeKZfLpVdffVWTJk2KdYsAAItixgYAYAkNDQ1KSUmRy+VSTU2NXC6XOebz+ZSeni6fz6f6+nolJyfHsFMAQEdhxgYAYDszZsyQJE2fPl2SNG/ePE2dOlXz5s2TJE2bNi2iDgCAcPGxbgAAAEkqKyuTJO3Zs0epqany+/3m2IwZM3TttddG1AEAEI5gAwCwhH79+untt9/W008/rR49euiaa65R3759tXHjRj3//PP6v//7P7MOAIADscYGAGAJHo9HXbp0kSTl5+dr27Zt5lj4eXV1tdxudyxaBAB0MNbYAABs55lnnjGPt2/frp/85Cf67LPP9JOf/ETbt29vtQ4AgBAeRQMAWEJo7UxWVpb27Nmjv/zlL/rLX/5ijoeus8YGANAaZmwAAJbgcDgkSb/4xS9UX1+vKVOmaOzYsZoyZYrq6+t1/fXXR9QBABCONTYAAEt4/vnn9dOf/lTZ2dnasWOH4uP/+1CB3+9Xz549VVVVpeeee07XXHNNDDsFAHQU1tgAAGwnPz9fklRVVaVevXpp4cKF2rlzpxYuXKhevXqpqqoqog4AgHDM2AAALCEQCKi4uFhOp1ObN29WIBAwx+Lj41VQUKBgMKiysjI5nc4YdgoA6ChtyQZsHgAAsASn06k5c+bosssu0wUXXKCioiI1NjYqKSlJ5eXl+uc//6lFixYRagAArSLYAAAs45JLLtGiRYt022236c033zSvFxYWatGiRbrkkkti2B0AwMp4FA0AYDk+n08LFixQeXm5ioqK9Mtf/lIulyvWbQEAOhiPogEAbGvx4sW67bbbtHnzZvPaE088oTlz5jBjAwA4KIINAMAyFi9erMsuu0wTJkzQjBkzlJycrIaGBi1dulSXXXYZj6MBAA6KR9EAAJYQ2hUtKytLe/bsiZix6dOnj7KysrR37152RQOAToT32AAAbKekpESbN2/W6tWrNXDgQJWWlqqmpkalpaUaOHCgVq9erU2bNqmkpCTWrQIALIhgAwCwhB07dkiSxo8fryVLlmj48OFKS0vT8OHDtWTJEo0fPz6iDgCAcAQbAIAl7N69W9J3Wz7HxUV+PcXFxWnSpEkRdQAAhCPYAAAsoXv37pK+20AgGAxGjAWDQS1ZsiSiDgCAcOyKBgCwhJ49e0qSli5dqokTJyopKUnV1dXq0qWLGhsbtXTp0og6AADCsSsaAMASQrui7d+/Xx6Pp8W42+1WZmYmu6IBQCfCrmgAANtxOp3q3r27PB6PHA6HxowZo4cfflhjxoyRw+GQx+NRVlYWoQYA0CpmbAAAltDQ0KCUlBTFx8crLy9PW7duNccKCgq0Y8cO+f1+1dfXKzk5OYadAgA6CjM2AADbmTFjhiTp9ttvV1lZmebOnaubb75Zc+fO1bfffqvp06dH1AEAEI7NAwAAllBWViZJ6tWrl4477jht2bLFHJs3b55uv/32iDoAAMIxYwMAsIR+/fpJkm6++WZVVVVFjFVVVWnq1KkRdQAAhCPYAAAs4ZFHHjGPzz33XJWWlqqmpkalpaU699xzW60DACCEYAMAsIRVq1aZx2+//bZeeeUV7dy5U6+88orefvvtVusAAAgh2AAALGHFihWSpJEjR6q5uVmzZs1S//79NWvWLDU3N2vkyJERdQAAhCPYAAAs5be//a3q6+s1ZcoUjR07VlOmTFF9fb0eeOCBWLcGALAwgg0AwBJGjx4tSbrvvvvkcDhUXFys4447TsXFxXI4HLr//vsj6gAACMcLOgEAlhAIBJSXl9diR7Rw2dnZ2rlzp5xOZwd2BgCIFV7QCQCwHafTqREjRhyyZsSIEYQaAECrCDYAAEvw+Xx688035Xa7VVBQEDHWp08fud1uvfnmm/L5fDHqEABgZQQbAIAlLFiwQH6/X7Nnz9a3336ruXPn6uabb9bcuXO1fv16zZo1S36/XwsWLIh1qwAAC4qPdQMAAEhSeXm5JMnhcKh///7avHmzOfbEE0/o7rvvjqgDACAcMzYAAEsoKiqSJN1www0aOHCgSktLVVNTo9LSUg0cOFA33nhjRB0AAOHYFQ0AYAkNDQ1KSUmRy+VSTU2NXC6XOebz+ZSeni6fz6f6+nolJyfHsFMAQEdhVzQAgO2sWrVK0nchpnfv3lq4cKF27typhQsXqnfv3uamAaE6AADCEWwAAJZQUVEhSbrlllu0d+9eTZ48WT179tTkyZO1d+9e3XLLLRF1AACEI9gAACwhNzdXknTllVeqrq4uYle0uro6XXHFFRF1AACEY40NAMASAoGAiouLNXDgQC1ZskRxcf/9t7dgMKhJkyZp3bp1Kisr4yWdANBJtCUbsN0zAMASnE6n5syZo8suu0wTJkzQjh07tG/fPmVmZqpnz5566623tGjRIkINAKBVzNgAACwlJydHlZWVLa736NFDu3btikFHAIBYYVc0AIAtFRcXm6Gmf//+uuyyy9S/f39JUmVlpYqLi2PZHgDAwngUDQBgCR6PR+Xl5ZKkgoICrV+/XuvXrzfPt2zZovLycnk8Hrnd7li2CgCwIGZsAACWMGHCBPN40KBBKi0tVU1NjUpLSzVo0KBW6wAACGHGBgBgCVu2bJEknXHGGRG7og0fPlxLlizRmWeeqY8++sisAwAgHDM2AABL6NKliyTJ7/dHbPUsSXFxcfL7/RF1AACEI9gAACxh2rRpkqSPP/5Y9fX1EWP19fX65JNPIuoAAAhHsAEAWEJRUZF5nJqaqnHjxqmkpETjxo1Tampqq3UAAITwHhsAgCUEAgEVFxerqqqqxYyNJKWkpKhHjx4qKyvjJZ0A0EnwHhsAgO04nU7NmTNHDQ0NGj9+vAYOHKiePXtq4MCBGj9+vBoaGjR79mxCDQCgVeyKBgCwjEsuuUSLFi3Sbbfdps2bN0uSduzYodraWi1atEiXXHJJbBsEAFgWj6IBACynoaFBM2bMUFlZmfr166fHHntMycnJsW4LANDBeBQNAGBbd9xxhzIyMjR//ny9/fbbmj9/vjIyMnTHHXfEujUAgIURbAAAlnHHHXfoscceU7du3fSnP/1JFRUV+tOf/qRu3brpscceI9wAAA6KR9EAAJbg8/mUmpqqbt26afv27YqP/+8yUL/fr169emnv3r2qq6uTy+WKYacAgI7Co2gAANtZsGCB/H6/fve730WEGkmKj4/Xgw8+KL/frwULFsSoQwCAlbErGgDAEsrLyyVJF154oQKBgEpKSlRRUaHc3FydeeaZuvDCCyPqAAAIR7ABAFhCUVGRJOnBBx/U0qVLze2eJalPnz4aN25cRB0AAOFYYwMAsASfz6fk5GQFg0FdeOGFuvvuu3XSSSdp3bp1euihh/TGG28oLi5ODQ0NrLEBgE6CNTYAANtxOp1KT0+XJH3yySf64osv5PV69cUXX+iTTz6RJKWnp8vpdMayTQCARRFsAACWUFJSIo/Ho6uvvlr79u3T5MmT1bNnT02ePFn79u3Tj3/8Y3k8HpWUlMS6VQCABRFsAACWUFFRIUl66qmnVFdXp7lz5+rmm2/W3LlzVVdXp6eeeiqiDgCAcAQbAIAl5ObmSpLWrVvX6njoeqgOAIBwbB4AALCEQCCg4uJiOZ1Obd68WYFAwBxzOp3q06ePgsGgysrKWGcDAJ0EmwcAAGzH6XRq8ODBKi8vl9Pp1J133qmysjLdeeedcjqdKi8v16BBgwg1AIBWMWMDALAEn8+n1NRUpaamqkuXLtqyZYs51qdPH+3fv191dXWqq6tju2cA6CSYsQEA2M6CBQvk9/s1e/ZslZeXa/ny5XrxxRe1fPlybdiwQbNmzZLf79eCBQti3SoAwILiY90AAACSVF5eLkm68MIL5XQ6NXr06IjxCy+8MKIOAIBwzNgAACyhqKhIkvTGG2/I5/Np3rx5mjp1qubNmyefz6c33ngjog4AgHCssQEAWEJojY3L5VJTU1OLXdESExPl8/lYYwMAnQhrbAAAtuNyuTR06FDV19crGAxqzJgxevjhhzVmzBgFg0HV19dr6NChhBoAQKuYsQEAWEJoxiYuLk4+n6/FuMvlUjAYZMYGADqRtmQDNg8AAFhCaFc0STr//PNVV1enPXv2KCsrS6mpqVq6dKlZN23atBh2CgCwIoINAMASysrKJEkFBQV6++23W6yxKSgo0JYtW8w6AADCEWwAAJbgcDgkSVu2bFGPHj10zTXXqG/fvtq4caOef/5584WdoToAAMIRbAAAljBs2DBJ3wWXxMREzZ492xzr3bu3HA6HDMMw6wAACMeuaAAAS1i9erUkyTAM7dq1S1dddZXmzJmjq666Srt27VJor5tQHQAA4ZixAQBYQjAYlPTd7mc+n08vvfSSXnrpJXM8dD1UBwBAOIINAMAS4uK+e4jA5/MpOztbo0ePVmpqqurq6rRixQpVVVVF1AEAEI5gAwCwhFNPPVWSFB8fr+TkZP3tb38zx/r06aP4+Hj5/X6zDgCAcAQbAIAl7N+/X5Lk9/vV2Nio6dOnm7uivfDCC+Y7bkJ1AACEI9gAACyhe/fukqTCwkJt3bpVjz/+uDkWHx+vwsJCbdq0yawDACAcwQYAYAk9e/aUJG3evFnjx49XbW2t9u7dq27duiktLU3Lli2LqAMAIJzDCO2faRFer1dut1sej0cZGRmxbgcA0EECgYCKi4vV0NCgysrKFuM9evRQSkqKysrK5HQ6Y9AhAKCjtSUbsLUMAMASnE6nBg8erMrKSrlcroj32LhcLlVWVmrQoEGEGgBAq5ixAQBYgs/nU2pqqlJTU+V2u7V161ZzrKCgQNXV1aqrq1NdXZ1cLlcMOwUAdBRmbAAAtrNgwQL5/X7Nnj1bX331lSZNmqSBAwdq0qRJWrdunWbNmiW/368FCxbEulUAgAW1KdjMnDlTp556qtLT05Wdna1JkyZp/fr1ETWNjY2aMmWKudjz0ksvbfVZaQAAwpWXl0uSFi1apPT0dC1ZskRffvmllixZovT0dP3jH/+IqAMAIFybgs3KlSs1ZcoUffzxx3rnnXfU3NyssWPHqq6uzqy59dZb9frrr+vvf/+7Vq5cqZ07d+qSSy6JeuMAgGNLUVGRJOmtt95SfHy8zj33XF1zzTU699xzFR8fr7fffjuiDgCAcEe1xmb37t3Kzs7WypUrddZZZ8nj8ah79+568cUXddlll0mS/vOf/+iEE05QaWmphg8fftjPZI0NAHROHo9HXbp0kSQ5HA6Ffz2Fn1dXV8vtdseiRQBAB+uwNTYej0eSlJmZKUlavXq1mpubdd5555k1xx9/vHr37q3S0tJWP6OpqUlerzfiBwDQ+dx9990R52PGjNHDDz+sMWPGHLIOAADpKF7QGQwGNW3aNI0aNUonnXSSJGnXrl1yuVzmv7iF9OjRQ7t27Wr1c2bOnKkHHnjg+7YBADhGhNZsJiQkqLm5We+8847eeecdczx0/cC1nQAASEcxYzNlyhStW7dOL7/88lE1cNddd8nj8Zg/27ZtO6rPAwDYU0NDgySpubm51fHQ9VAdAADhvlewufnmm/XGG29o+fLl6tWrl3k9JydHPp9P1dXVEfWVlZXKyclp9bMSExOVkZER8QMA6HxOPPFE8zg+Pl5XXXWV5s6dq6uuukrx8fGt1gEAENKmR9EMw9DUqVP1yiuvaMWKFSosLIwYHzZsmBISEvTee+/p0ksvlfTdowVbt27ViBEjotc1AOCY5vf79dJLL+mll16KdSsAAJtoU7CZMmWKXnzxRb366qtKT08318243W4lJyfL7Xbr5z//uaZPn67MzExlZGRo6tSpGjFixBHtiAYA6LyO9P00vMcGANCaNgWbJ598UpI0evToiOvPPPOMrrvuOknS3LlzFRcXp0svvVRNTU0aN24cb4kGABxW+GPMh9vuGQCAA7X5UbTDSUpK0vz58zV//vzv3RQAoPPp1auXVq9eLanl9034efjaTgAAQo7qPTYAAETLRRddZB47HI6IsfDz8DoAAEIINgAASwi99Fk69IxNeB0AACEEGwCAJXTt2lVSy9makND1UB0AAOHatMYGAID28u9//1vSd7Mz559/vurq6rRnzx5lZWUpNTVVS5cuNeuuvfbaWLYKALAggg0AwBJCj5sVFBTonXfekd/vN8fi4+NVUFCgLVu2HNFGNgCAzodgAwCwhH79+kmStmzZouzsbF1zzTXq27evNm7cqOeff15btmyJqAMAIJzDsNg/fXm9Xrndbnk8HmVkZMS6HQBAB2loaFBKSori4+OVm5urbdu2mWO9e/fWzp075ff7VV9fr+Tk5Bh2CgDoKG3JBszYAAAsYdWqVZIkv9+vxsZGnX322TIMQw6HQ19//bX5aNqqVatavCgaAACCDQDAEioqKiRJJ598sj777DOtXLkyYjx0PVQHAEA4gg0AwBJyc3MlSZ999pmys7M1evRopaamqq6uTitWrNBnn30WUQcAQDiCDQDAEk4//XRJksvl0rZt2+Ryucwxn8+n9PR0+Xw+sw4AgHAEGwCAJfzxj3+U9F2Iufjii5WUlKTq6mp16dJFjY2N8vl8Zt20adNi2CkAwIoINgAASygvL5ckDRkyRP/85z9bjA8ZMkRr16416wAACEewAQBYQlFRkSRp7dq1crlcOvPMM5Wbm6uKigqVlJRo7dq1EXUAAITjPTYAAEvweDzq0qWLJCk/Pz/iPTbh59XV1XK73bFoEQDQwdqSDeI6qCcAAA7p7rvvNo8rKys1dOhQjRo1SkOHDlVlZWWrdQAAhPAoGgDAEr799ltJUlJSkhobG7VmzZqI8dD1UB0AAOEINgAAS0hNTZUkNTY2KiEhQWeddZa5xub9999XY2NjRB0AAOEINgAAS7jgggu0ZMkSSdK+ffuUlpZmjtXW1io9Pd2sAwDgQKyxAQBYQvgWz926ddPJJ5+sUaNG6eSTT1a3bt1arQMAIIQZGwCAJdTV1UmSEhIS5PP5WqyxSUhIUHNzs1kHAEA4ZmwAAJZw3HHHSZKam5vN8+HDh7d6HQCAA/EeGwCAJezbt8985Kx3797aunWrOVZQUKAtW7ZIkvbu3avMzMyY9AgA6Fi8xwYAYDv33nuveVxRUaG8vDzl5OQoLy9PO3fubLUOAIAQ1tgAACyhrKxMkpSenq6ampqIMBN+PVQHAEA4ZmwAAJbQr18/SVJNTY0cDof69++v4cOHq3///nI4HKqpqYmoAwAgHGtsAACWsHv3bmVnZ0tSi++A0HeDJFVVVal79+4x6REA0LFYYwMAsJ0bb7zRPO7evbt+/etf69tvv9Wvf/3riCATXgcAQAjBBgBgCeXl5ZKks88+Wz6fT7NmzVL//v01a9Ys+Xw+nX322RF1AACEI9gAACyhqKjIPC4oKIgYKygoUOjJ6fA6AABCWGMDALCE2tpapaenS5LGjx+v/v37q6GhQcnJyVq/fr2WLVsm6bvNBdLS0mLZKgCgg7QlGxBsAACWEAgElJKSIp/Pd9Aal8ul+vp6OZ3ODuwMABArbB4AALCdkpKSQ4YaSfL5fCopKemgjgAAdkKwAQBYwrZt2yR9NyvTmtD1UB0AAOEINgAAS1i1apWk72Zl4uLilJWVJbfbraysLMXFxZmzOaE6AADCxce6AQAAJKm5udk8DgaD2rNnz2HrAAAIYcYGAGAJX331VcT5iSeeqNdff10nnnjiIesAAJCYsQEAWET4Tmd5eXn66quvNHHiRElSz549tWPHjhZ1AACEEGwAAJbw5Zdfmsd+v19nn322DMOQw+HQN99802odAAAhBBsAgCU4HA7zuKqqSlVVVYetAwAghDU2AABLyMvLizhPTU1VRkaGUlNTD1kHAIBEsAEAWMQ777wTcV5XVyev16u6urpD1gEAIBFsAAAW8fLLL0ecJyQkqEePHkpISDhkHQAAEmtsAAAWceA2zs3NzaqsrDxsHQAAEjM2AACL+Pjjj83jsWPHqmvXrnK5XOratavGjh3bah0AACHM2AAALMEwDPP43XffVTAYlCT5fD69++67rdYBABBCsAEAWEKXLl3M42AwqKysLDmdTgUCAe3Zs6fVOgAAQngUDQBgCddee23E+Z49e1RZWRkRalqrAwBAItgAACzi888/jzhPTk7WgAEDlJycfMg6AAAkHkUDAFjEge+raWho0Ndff33YOgAAJGZsAAAWsWLFCvM4KytLKSkpcjqdSklJUVZWVqt1AACEMGMDALCE5uZm8zh8XU19fb3q6+tbrQMAIIQZGwCAJXTt2rXF+eDBg1u9DgDAgQg2AABLuPHGGyPO9+/fr88//1z79+8/ZB0AABLBBgBgEQsXLow479q1qwYNGtRihubAOgAAJNbYAAAs4sCZmf3797e41lodAAASwQYAYBEJCQnmcffu3RUMBtXQ0KDk5GTFxcVp9+7dLeoAAAjhUTQAgCWce+655vHu3bu1d+9e1dfXa+/evWaoObAOAIAQZmwAAJaQnJwcce5wOMxjwzAOWgcAgESwAQBYxLBhwyLOw8PMoeoAAJB4FA0AYBGrV69ucS0uruXXVGt1AAAQbAAAllBTU9PiWjAYPKI6AAAcxsHm+mPE6/XK7XbL4/EoIyMj1u0AADpIenq6amtrzfNevXopKSlJjY2N2r59u3k9LS2NcAMAnURbsgFrbAAAltDU1BRxHh5mDlUHAIDEo2gAAItwOp1RrQMAdC4EGwCAJZx88slRrQMAdC4EGwCAJfj9/qjWAQA6F4INAMASNm/eHNU6AEDnQrABAFhCY2NjVOsAAJ0LwQYAYAlsHgAAOBoEGwCAJeTk5ES1DgDQuRBsAACWkJmZGdU6AEDnQrABAFjCFVdcEdU6AEDnQrABAFjC448/HtU6AEDnQrABAFhCdXV1VOsAAJ0LwQYAYAmJiYkR5w6HI+K/B6sDAEAi2AAALOK8886LODcMI+K/B6sDAEAi2AAALOLdd9+NOE9ISNBxxx2nhISEQ9YBACBJ8bFuAAAASWpsbIw4b25u1rfffnvYOgAAJGZsAAAW0dTUZB47HA4lJCQoLi5OCQkJEetswusAAAgh2AAALMHtdpvHhmGoublZwWBQzc3NEetswusAAAgh2AAALCE5OTmqdQCAzoVgAwCwhHPOOSeqdQCAzoVgAwCwhNY2CjiaOgBA50KwAQBYQm1tbVTrAACdC9s9AwAs4fPPPzePXS6XEhMT5ff7FR8fr6amJvl8vhZ1AACEEGwAAJbj8/nMIAMAwJEg2AAALCk1NVVOp1OBQEB1dXWxbgcAYHGssQEAWMK9994bcV5XVyev19si1BxYBwCARLABAFjE3r17o1oHAOhcCDYAAEtoamqKah0AoHMh2AAALOHjjz+Oah0AoHMh2AAALKG5uTmqdQCAzoVgAwCwhC1btkS1DgDQuRBsAACWEBd3ZF9JR1oHAOhc+HYAAFhCYmJiVOsAAJ0LwQYAYAmjRo2Kah0AoHNxGIZhxLqJcF6vV263Wx6PRxkZGbFuBwDQQRwOxxHXWuyrCwDQTtqSDZixAQAAAGB7BBsAAAAAtkewAQBYQm5ublTrAACdC8EGAGAJ1dXVUa0DAHQuBBsAgCU0NDREtQ4A0LkQbAAAAADYHsEGAGAJLpcrqnUAgM6lzcHm/fff18SJE5WXlyeHw6ElS5ZEjF933XVyOBwRP+PHj49WvwCAY1Tv3r2jWgcA6FzaHGzq6uo0ePBgzZ8//6A148ePV0VFhfnz0ksvHVWTAIBj35YtW6JaBwDoXOLb+gvnn3++zj///EPWJCYmKicn53s3BQDofJqbm6NaBwDoXNpljc2KFSuUnZ2t/v3766abbtLevXsPWtvU1CSv1xvxAwAAAABtEfVgM378eD333HN677339Oijj2rlypU6//zzFQgEWq2fOXOm3G63+ZOfnx/tlgAAAAAc4xyGYRjf+5cdDr3yyiuaNGnSQWs2btyooqIivfvuu/rBD37QYrypqUlNTU3mudfrVX5+vjwejzIyMr5vawAAm3E4HEdcexRfXQAAG/F6vXK73UeUDdp9u+e+ffsqKytLGzZsaHU8MTFRGRkZET8AgM6nqKgoqnUAgM6l3YPN9u3btXfvXuXm5rb3rQAANnawR5a/bx0AoHNp865otbW1EbMvmzZt0tq1a5WZmanMzEw98MADuvTSS5WTk6Py8nLdcccdKi4u1rhx46LaOADg2MILOgEAR6PNwebTTz/VOeecY55Pnz5dknTttdfqySef1BdffKE///nPqq6uVl5ensaOHavf/va3SkxMjF7XAIBjzs6dO6NaBwDoXNocbEaPHn3IRZtvvfXWUTUEAOicgsFgVOsAAJ1Lu6+xAQDgSNTX10e1DgDQuRBsAAAAANgewQYAAACA7RFsAACW0KtXr6jWAQA6F4INAMAStm/fHtU6AEDnQrABAAAAYHsEGwAAAAC2R7ABAFgCa2wAAEeDYAMAsITKysqo1gEAOheCDQDAEoLBYFTrAACdC8EGAGAJgUAgqnUAgM6FYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGwvPtYNAACsr8EXUPnu2na9R2JikpqaGo+obt0OT7v2UtQ9TckuZ7veAwAQXQQbAMBhle+u1YV/+KBd75H+49+r6Zkbj6iuvXt5Y+oZOqmnu13vAQCILodhGEasmwjn9Xrldrvl8XiUkZER63YAAOqYGRtJGtw7U8Fg8KDjcXFx+nzrvnbvgxkbALCGtmQDZmwAAIeV7HJ2yAxGIBCQ0+lsNdzExcUpEAi0ew8AAHti8wAAgKUEAgFt3LhRiUlJkqTEpCRt3LiRUAMAOCSCDQDAcgoLC/Xphl0q+PUb+nTDLhUWFsa6JQCAxRFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAAAAANhem4PN+++/r4kTJyovL08Oh0NLliyJGDcMQ/fee69yc3OVnJys8847T2VlZdHqFwAAAABaaHOwqaur0+DBgzV//vxWx2fNmqXf//73euqpp7Rq1SqlpqZq3LhxamxsPOpmAQAAAKA18W39hfPPP1/nn39+q2OGYWjevHm65557dNFFF0mSnnvuOfXo0UNLlizRlVdeeXTdAgAAAEArorrGZtOmTdq1a5fOO+8885rb7dbpp5+u0tLSVn+nqalJXq834gcAAAAA2iKqwWbXrl2SpB49ekRc79Gjhzl2oJkzZ8rtdps/+fn50WwJAAAAQCcQ813R7rrrLnk8HvNn27ZtsW4JAAAAgM1ENdjk5ORIkiorKyOuV1ZWmmMHSkxMVEZGRsQPAAAAALRFVINNYWGhcnJy9N5775nXvF6vVq1apREjRkTzVgAAAABgavOuaLW1tdqwYYN5vmnTJq1du1aZmZnq3bu3pk2bpt/97nfq16+fCgsL9Zvf/EZ5eXmaNGlSNPsGAAAAAFObg82nn36qc845xzyfPn26JOnaa6/Vs88+qzvuuEN1dXW68cYbVV1drTPOOEPLli1TUlJS9LoGgE5u05461TX5Y91Gu9pQVRvx32NZamK8CrNSY90GANiawzAMI9ZNhPN6vXK73fJ4PKy3AYBWbNpTp3Nmr4h1G4iy5bePJtwAwAHakg3aPGMDAIit0EzNvCuGqDg7LcbdtJ/G5oC2729Qr67JSkpwxrqddrOhqlbT/rr2mJ+BA4D2RrABAJsqzk7TST3dsW6jXZ3SJ9YdAADsIubvsQEAAACAo0WwAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAtkewAQAAAGB7BBsAAAAAthcf6wYAAG3niPdqk3e94pLSYt0KjtImb60c8d5YtwEAtkewAQAbSuiySv/zycOxbgNRktDlB5IuiHUbAGBrBBsAsKHm6tM1Z8KPVZTNjI3dlVfV6lcvlMe6DQCwPYINANiQ4c9QYUZ/DejmjnUrOErBRo8M/+5YtwEAtsfmAQAAAABsj2ADAAAAwPYINgAAAABsj2ADAAAAwPYINgAAAABsj2ADAAAAwPYINgAAAABsj2ADAAAAwPYINgAAAABsj2ADAAAAwPYINgAAAABsj2ADAAAAwPYINgAAAABsj2ADAAAAwPYINgAAAABsj2ADAAAAwPYINgAAAABsj2ADAAAAwPYINgAAAABsLz7WDQAA2qahOSBJWrfDE+NO2ldjc0Db9zeoV9dkJSU4Y91Ou9lQVRvrFgDgmECwAQCbKf///4fwnYu/jHEniKbURL6SAeBo8P9FAcBmxp6YI0kqyk5T8jE+kzHtr2s174ohKs5Oi3U77So1MV6FWamxbgMAbI1gAwA2k5nq0pWn9Y51Gx2mODtNJ/V0x7oNAIDFsXkAAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwPYINAAAAANsj2AAAAACwvagHm/vvv18OhyPi5/jjj4/2bQAAAADAFN8eH3riiSfq3Xff/e9N4tvlNgAAAAAgqZ2CTXx8vHJyctrjowEAAACghXZZY1NWVqa8vDz17dtXV199tbZu3XrQ2qamJnm93ogfAAAAAGiLqAeb008/Xc8++6yWLVumJ598Ups2bdKZZ56pmpqaVutnzpwpt9tt/uTn50e7JQAAAADHOIdhGEZ73qC6uloFBQV6/PHH9fOf/7zFeFNTk5qamsxzr9er/Px8eTweZWRktGdrAAALW7fDowv/8IHemHqGTurpjnU7AIAY8Hq9crvdR5QN2n1Vf5cuXXTcccdpw4YNrY4nJiYqMTGxvdsAAAAAcAxr9/fY1NbWqry8XLm5ue19KwAAAACdVNSDze23366VK1dq8+bN+uijj3TxxRfL6XTqqquuivatAAAAAEBSOzyKtn37dl111VXau3evunfvrjPOOEMff/yxunfvHu1bAQAAAICkdgg2L7/8crQ/EgAAAAAOqd3X2AAAAABAeyPYAAAAALA9gg0AAAAA2yPYAAAAALA9gg0AAAAA2yPYAAAAALA9gg0AAAAA2yPYAAAAALA9gg0AAAAA2yPYAAAsJxAI6N8flaju65X690clCgQCsW4JAGBxBBsAgKUsXrxYxcXFuv7yidrz+mO6/vKJKi4u1uLFi2PdGgDAwuJj3QAAwPoafAGV765t9/u8+8/XNH3ytTIMI+L65s2bddlll+nxP/5Z513ww3bvo6h7mpJdzna/DwAgegg2AIDDKt9dqwv/8EG73sMIBrRj4YwWocYcNwzNmDFDeWVuOeLaN3S8MfUMndTT3a73AABEF8EGAHBYRd3T9MbUM9r1Hv/+qETXP1Z5yBq/p1L3nxqnU0e2by9F3dPa9fMBANHnMA72T2Mx4vV65Xa75fF4lJGREet2AAAdZMiQIfr8888PWzd48GCtXbu2/RsCAMRcW7IBmwcAACzhwFDjdDrlcDjkdDoPWQcAgMSjaAAAiwpt8cxWzwCAI8GMDQDAshwOR6xbAADYBMEGAGBZFlsGCgCwMIINAMAS4uKO7CvpSOsAAJ0L3w4AAEsIBoNRrQMAdC4EGwAAAAC2R7ABAFjCgds6H20dAKBzIdgAACzhSDcKYEMBAEBrCDYAAEvIzMyMah0AoHMh2AAALIFH0QAAR4NgAwCwhKysrKjWAQA6F4INAMASvvrqq6jWAQA6F4INAAAAANsj2AAAAACwPYINAMASzj333KjWAQA6F4INAMASSkpKoloHAOhcCDYAAEtobm6Oah0AoHMh2AAALCcuLu6Q5wAAHIhvCgCAJbhcLvM4GAxGjIWfh9cBABBCsAEAWMLw4cOjWgcA6FwINgAASxg4cGBU6wAAnQvBBgBgCYmJiVGtAwB0Lg7DMIxYNxHO6/XK7XbL4/EoIyMj1u0AADqIw+E44lqLfXUBANpJW7IBMzYAAAAAbC8+1g0AANCa8H+Z83q9MewEAGAHBBsAgCVkZ2erqqrKPD9YmMnOzu6olgAANsKjaAAAS0hJSYlqHQCgcyHYAAAsISkpKap1AIDOhWADALCExsbGqNYBADoXgg0AwBJ69+4d1ToAQOdCsAEAWML69eujWgcA6FwINgAAS3A6nVGtAwB0LgQbAIAlZGZmtrjW2g5ordUBAECwAQBYwuWXX97iWn19/RHVAQDgMAzDiHUT4bxer9xutzweT8RbpwEAxzan06lgMGieZ2dnq2fPntqxY0fEizvj4uIUCARi0SIAoIO1JRvEd1BPAAAcUniokaSqqqqIQHOwOgAAJB5FAwBYRFzcf7+Sxo0bp759+6pr167q27evxo0b12odAAAhfDsAACxh1qxZ5vFbb72ljRs3av/+/dq4caPeeuutVusAAAgh2AAALGHYsGER53FxcRo6dGiLGZoD6wAAkNg8AABgET6fT6mpqfL7/QetiY+PV11dnVwuVwd2BgCIlbZkA2ZsAACW8NFHH5mhpkuXLhFjoXO/36+PPvqogzsDANgBwQYAYAk7duyQJBUWFqqmpiZirLa2VoWFhRF1AACEI9gAACxh9+7dkqRNmza1WEdz8skna9OmTRF1AACEI9gAACyhW7du5vEnn3wSMRZ+Hl4HAEAIwQYAYAl79+5tce38888/ojoAAAg2AABLqKioMI+7d+8uSVq6dKkkKTs7u9U6AABC2O4ZAGAJDofDPJ4wYYKKiorU2NiopKQklZeX68033zTHLfbVBQBoJ23JBvEd1BMAAEckKSlJ//znPyPCS1xcnBITE9XU1BTDzgAAVkawAQBYSmNjY4trwWCQUAMAOCTW2AAALCG0niZadQCAzoVgAwCwhLi4I/tKOtI6AEDnwrcDAMASnn/++ajWAQA6F4INAMASampqJEmnnXaali1bFjG2bNkynXrqqRF1AACEI9gAACwhNzdX0ncv4BwwYIC6du2q+Ph4de3aVQMGDDBfzBmqAwAgHMEGAGAJI0eOlCSVl5erd+/e2r9/v/x+v/bv36/evXtr48aNEXUAAIQj2AAALCE/Pz+qdQCAzoVgAwCwhL59+5rHTqczYiz8PLwOAIAQXtAJALCEIUOGmMfjx49XUVGRGhsblZSUpPLycr355ptm3b59+2LUJQDAqgg2AABLCO12NnXqVL3++utmkJGkwsJC3XTTTXryySfZFQ0A0CqCDQDAEtLT07V//34tWrRI5eXlmjFjhsrKytSvXz899thj5iNo6enpMe4UAGBFDsMwjFg3Ec7r9crtdsvj8SgjIyPW7QAAOsiOHTvUq1cvSd+tqQkEAuZY+Pn27dvVs2fPmPQIAOhYbckGbB4AALCEnj17Ki7uu6+lQCCg+Ph4FRcXKz4+3gw1cXFxhBoAQKsINgAAS/D5fGawkSS/368NGzbI7/eb1+Li4uTz+WLRHgDA4gg2AABLWLBggRlinE6nEhMTI/4rfRd2FixYEMs2AQAWxeYBAABLWL9+vSQpISFBtbW1crlc5pjP51NaWpqam5vNOgAAwjFjAwCwhC+//FKS9IMf/ED79u1TTk6OkpKSlJOTo3379umcc86JqAMAIBwzNgAAS0hOTpYkLVu2TLm5ueb1ysrKiPNQHQAA4ZixAQBYQv/+/SPOu3Xrpj/+8Y/q1q3bIesAAJB4jw0AwCI2bdpkvoQzLi5OwWDQHAs/37hxowoLC2PSIwCgY7UlG/AoGgDAEkaMGGEeO51OnX322crLy9POnTv1wQcfmMFmxIgR2rVrV6zaBABYFMEGAGAJ1dXVkqRhw4Zp9erVWr58ecT40KFDtWbNGrMOAIBwrLEBAFhCly5dJEn79u1TTU2NJk2apIEDB2rSpEmqqanRvn37IuoAAAjHGhsAgCXs2rXL3P0sPz9f27ZtM8fCzysqKpSTkxOTHgEAHast2YAZGwCAJeTk5Jgv5dy2bZtSUlJ0/PHHKyUlxQw1LpeLUAMAaBXBBgBgCYFAQHl5eeZ5fX29/vOf/6i+vt681rNnTwUCgVi0BwCwOIINAMASSkpKtHnzZvM8JSVFCQkJSklJMa9t2rRJJSUlMegOAGB17IoGALCELVu2SJISEhJUW1trPpYmST6fT2lpaWpubjbrAAAIx4wNAMASlixZIkm68sor5XQ6tWLFCr300ktasWKFnE6nLr/88og6AADCMWMDALCEuro6SdKaNWtUVFQUMTNTUFCg9PT0iDoAAMIxYwMAsITjjjtOkrRu3To1NjZq4cKF2rlzpxYuXKjGxkatW7cuog4AgHC8xwYAYAm1tbXmrExBQUHEjE2fPn3MjQVqamqUlpYWixYBAB2M99gAAGzn008/NY937typK6+8UnPmzNGVV16pHTt2tFoHAEAIwQYAYAkVFRWSpAkTJqi5uVkvv/yybrvtNr388stqbm7WhAkTIuoAAAhHsAEAWEJubq4k6Z577lF9fb2mTJmisWPHasqUKaqvr9fdd98dUQcAQDjW2AAALCEQCKi4uFgDBw7UP/7xD3344YeqqKhQbm6uRo0apUsvvVTr1q1TWVmZnE5nrNsFAHSAtmQDtnsGAFiC0+nUnDlzdOmll8rtdquhocEcS05OVkNDg/7xj38QagAAreJRNACApTgcjlavtXYdAIAQHkUDAFgCj6IBAA7UlmxAsAEAWMKKFSt0zjnnqLS0VElJSRo6dKg5tmbNGjU0NGjkyJFavny5Ro8eHbtGAQAdxhLvsZk/f7769OmjpKQknX766frkk0/a61YAgGNAaBvnESNGRIQaSRo6dKhGjhwZUQcAQLh2CTZ//etfNX36dN1333367LPPNHjwYI0bN05VVVXtcTsAwDHgwG2c4+LidOuttyouLu6QdQAASO0UbB5//HHdcMMN+tnPfqYBAwboqaeeUkpKiv7f//t/7XE7AMAxID093TwuLy9XIBDQ448/rkAgoPLy8lbrAAAIiXqw8fl8Wr16tc4777z/3iQuTuedd55KS0tb1Dc1Ncnr9Ub8AAA6n1NOOcU8njZtmkpLS1VTU6PS0lJNmzat1ToAAEKiHmz27NmjQCCgHj16RFzv0aOHdu3a1aJ+5syZcrvd5k9+fn60WwIA2MiECRP05ZdfauTIkcrIyNDIkSO1bt06jR07NtatAQAsLOYv6Lzrrrs0ffp089zr9RJuAKATW7p0qXw+n0pKSsztns8880y5XK5YtwYAsLCoB5usrCw5nU5VVlZGXK+srFROTk6L+sTERCUmJka7DQCAzaxZs0ZDhw5VMBjUtm3bIrZ03rx5s4LBoFkHAMCBov4omsvl0rBhw/Tee++Z14LBoN577z2NGDEi2rcDABwjhgwZYh4XFhbK6XTql7/8pZxOpwoLC1utAwAgpF0eRZs+fbquvfZanXLKKTrttNM0b9481dXV6Wc/+1l73A4AcIwwDEMOh0PSd/8o9uSTT7YYBwCgNe0SbK644grt3r1b9957r3bt2qUhQ4Zo2bJlLTYUAADgQIZhaO3atREv6VyzZg0zNQCAQ3IYFvvnL6/XK7fbLY/Ho4yMjFi3AwAAACBG2pIN2uUFnQAAAADQkQg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGyPYAMAAADA9gg2AAAAAGwvPtYNHMgwDEmS1+uNcScAAAAAYimUCUIZ4VAsF2xqamokSfn5+THuBAAAAIAV1NTUyO12H7LGYRxJ/OlAwWBQO3fuVHp6uhwOR6zbAQDEiNfrVX5+vrZt26aMjIxYtwMAiAHDMFRTU6O8vDzFxR16FY3lgg0AANJ3wcbtdsvj8RBsAACHxeYBAAAAAGyPYAMAAADA9gg2AABLSkxM1H333afExMRYtwIAsAHW2AAAAACwPWZsAAAAANgewQYAAACA7RFsAAAAANgewQYAAACA7RFsAMBCHA6HlixZEus2WtWnTx/NmzcvZvd/9tln1aVLlw651/r165WTk6OampoOv3dbPfXUU5o4cWKs2wCAmCPYAEAH2b17t2666Sb17t1biYmJysnJ0bhx4/Thhx/GujXLaS1EXXHFFfr222875P533XWXpk6dqvT09A6539G4/vrr9dlnn6mkpCTWrQBATMXHugEA6CwuvfRS+Xw+/fnPf1bfvn1VWVmp9957T3v37o11ax3CMAwFAgHFx3+/r57k5GQlJydHuauWtm7dqjfeeEN/+MMf2v1ehxMIBORwOBQXd/B/h3S5XPrxj3+s3//+9zrzzDM7sDsAsBZmbACgA1RXV6ukpESPPvqozjnnHBUUFOi0007TXXfdpR/+8IcH/b1t27bp8ssvV5cuXZSZmamLLrpImzdvjqh5+umndcIJJygpKUnHH3+8FixYYI5t3rxZDodDL7/8skaOHKmkpCSddNJJWrly5SH7raqq0sSJE5WcnKzCwkK98MILEeOhz127dm3En9HhcGjFihWSpBUrVsjhcGjp0qUaNmyYEhMT9cEHH6i8vFwXXXSRevToobS0NJ166ql69913zc8ZPXq0tmzZoltvvVUOh0MOh0NS64+DPfnkkyoqKpLL5VL//v31/PPPR4w7HA49/fTTuvjii5WSkqJ+/frptddeO+Sf/W9/+5sGDx6snj17thh76623dMIJJygtLU3jx49XRUWFORYMBvXggw+qV69eSkxM1JAhQ7Rs2TJzPPT3UV1dbV5bu3atHA6H+X/T0J/xtdde04ABA5SYmKitW7dqxYoVOu2005SamqouXbpo1KhR2rJli/k5EydO1GuvvaaGhoZD/tkA4FhGsAGADpCWlqa0tDQtWbJETU1NR/Q7zc3NGjdunNLT01VSUqIPP/zQ/B/UPp9PkvTCCy/o3nvv1UMPPaRvvvlGDz/8sH7zm9/oz3/+c8RnzZgxQ7fddpvWrFmjESNGaOLEiYecKbruuuu0bds2LV++XIsWLdKCBQtUVVX1vf7sd955px555BF98803GjRokGpra3XBBRfovffe05o1azR+/HhNnDhRW7dulSQtXrxYvXr10oMPPqiKioqI8BDulVde0S233KLbbrtN69at0+TJk/Wzn/1My5cvj6h74IEHdPnll+uLL77QBRdcoKuvvlr79u07aL8lJSU65ZRTWlyvr6/X7Nmz9fzzz+v999/X1q1bdfvtt5vjTzzxhObMmaPZs2friy++0Lhx4/TDH/5QZWVlbfr7qq+v16OPPqqnn35aX331lTIzMzVp0iSdffbZ+uKLL1RaWqobb7zRDHySdMopp8jv92vVqlVtuhcAHFMMAECHWLRokdG1a1cjKSnJGDlypHHXXXcZn3/+eUSNJOOVV14xDMMwnn/+eaN///5GMBg0x5uamozk5GTjrbfeMgzDMIqKiowXX3wx4jN++9vfGiNGjDAMwzA2bdpkSDIeeeQRc7y5udno1auX8eijj7ba5/r16w1JxieffGJe++abbwxJxty5cyM+d82aNWbN/v37DUnG8uXLDcMwjOXLlxuSjCVLlhz27+bEE080/vCHP5jnBQUF5r1CnnnmGcPtdpvnI0eONG644YaImh/96EfGBRdcYJ5LMu655x7zvLa21pBkLF269KC9DB482HjwwQdb3FuSsWHDBvPa/PnzjR49epjneXl5xkMPPRTxe6eeeqrxy1/+0jCM//597N+/3xxfs2aNIcnYtGlTxH3Wrl1r1uzdu9eQZKxYseKgPRuGYXTt2tV49tlnD1kDAMcyZmwAoINceuml2rlzp1577TWNHz9eK1as0Mknn6xnn3221frPP/9cGzZsUHp6ujnjk5mZqcbGRpWXl6uurk7l5eX6+c9/bo6npaXpd7/7ncrLyyM+a8SIEeZxfHy8TjnlFH3zzTet3vebb75RfHy8hg0bZl47/vjjv/euYAfOftTW1ur222/XCSecoC5duigtLU3ffPONOWNzpL755huNGjUq4tqoUaNa/LkGDRpkHqempiojI+OQs08NDQ1KSkpqcT0lJUVFRUXmeW5urvk5Xq9XO3fuPKJ+DsflckX0nJmZqeuuu07jxo3TxIkT9cQTT7Q6i5WcnKz6+vo23QsAjiVsHgAAHSgpKUljxozRmDFj9Jvf/Ea/+MUvdN999+m6665rUVtbW6thw4a1WN8iSd27d1dtba0k6U9/+pNOP/30iHGn09ku/YeEFrMbhmFea25ubrU2NTU14vz222/XO++8o9mzZ6u4uFjJycm67LLLzMfroi0hISHi3OFwKBgMHrQ+KytL+/fvP6LPCf/zH86R/p0lJydHPGYmSc8884x+9atfadmyZfrrX/+qe+65R++8846GDx9u1uzbt0/du3c/4n4A4FjDjA0AxNCAAQNUV1fX6tjJJ5+ssrIyZWdnq7i4OOLH7XarR48eysvL08aNG1uMFxYWRnzWxx9/bB77/X6tXr1aJ5xwQqv3Pf74482akPXr10cseg/9D+jwmYPwjQQO5cMPP9R1112niy++WAMHDlROTk6LDRFcLpcCgcAhP+eEE05osVX2hx9+qAEDBhxRHwczdOhQff311236nYyMDOXl5R2yn6P5Owv1ddddd+mjjz7SSSedpBdffNEcKy8vV2Njo4YOHdqmvgHgWMKMDQB0gL179+pHP/qRrr/+eg0aNEjp6en69NNPNWvWLF100UWt/s7VV1+txx57TBdddJG529aWLVu0ePFi3XHHHerVq5ceeOAB/epXv5Lb7db48ePV1NSkTz/9VPv379f06dPNz5o/f7769eunE044QXPnztX+/ft1/fXXt3rf/v37a/z48Zo8ebKefPJJxcfHa9q0aRFbLScnJ2v48OF65JFHVFhYqKqqKt1zzz1H9HfRr18/LV68WBMnTpTD4dBvfvObFjMoffr00fvvv68rr7xSiYmJysrKavE5M2bM0OWXX66hQ4fqvPPO0+uvv67FixdH7LD2fYwbN06/+MUvFAgE2jTzNWPGDN13330qKirSkCFD9Mwzz2jt2rXmjFtxcbHy8/N1//3366GHHtK3336rOXPmHPZzN23apIULF+qHP/yh8vLytH79epWVlemnP/2pWVNSUqK+fftGPCoHAJ1OjNf4AECn0NjYaNx5553GySefbLjdbiMlJcXo37+/cc899xj19fVmncI2DzAMw6ioqDB++tOfGllZWUZiYqLRt29f44YbbjA8Ho9Z88ILLxhDhgwxXC6X0bVrV+Oss84yFi9ebBjGfxf5v/jii8Zpp51muFwuY8CAAca//vWvQ/ZbUVFhTJgwwUhMTDR69+5tPPfccy0W9H/99dfGiBEjjOTkZGPIkCHG22+/3ermAeGL5UM9nXPOOUZycrKRn59v/O///q9x9tlnG7fccotZU1paagwaNMhITEw0Ql9VB24eYBiGsWDBAqNv375GQkKCcdxxxxnPPfdcxPiBf5+GYRhut9t45plnDvpnb25uNvLy8oxly5aZ11q79yuvvGKEf40GAgHj/vvvN3r27GkkJCQYgwcPbrFJwQcffGAMHDjQSEpKMs4880zj73//e4vNAw68z65du4xJkyYZubm5hsvlMgoKCox7773XCAQCZs3YsWONmTNnHvTPBACdgcMw2vCAMADAVjZv3qzCwkKtWbNGQ4YMiXU7tjF//ny99tpreuutt2LdymF99dVXOvfcc/Xtt9/K7XbHuh0AiBkeRQMA4ACTJ09WdXW1ampqlJ6eHut2DqmiokLPPfccoQZAp8eMDQAcw5ixAQB0FgQbAAAAALbHds8AAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2CDYAAAAAbI9gAwAAAMD2/j9bK2VUfbo3UwAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Sleepduration_boxplot = Sleepduration.plot.box(figsize = (10,8));\n",
"\n",
"Sleepduration_boxplot;"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"## Anatomy of a Boxplot\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Two pandas methods to create a boxplot are:\n",
"\n",
"1. `pandas.DataFrame.plot.box`: plot a Series or columns of a DataFrame\n",
" \n",
"2. `pandas.DataFrame.boxplot`: plot the columns of a DataFrame with easy to use syntax for boxplots by a group.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Boxplots are helpful for comparing the distributions between groups."
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAALDCAYAAACcg8orAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU5f4H8M/AsCOgsogbIOIKhrlVimjlgkBqWnY1t8ysLPWauHQrl2tSmqVppllpmTet1LoXKy0TNbVNc09FBBdEAWWRRZbh+/vD3znNMMOOHNTP+/WaV3KW5/k+z0zPc75z5pyjExEBEREREREREdUqK60DICIiIiIiIrobMSEnIiIiIiIi0gATciIiIiIiIiINMCEnIiIiIiIi0gATciIiIiIiIiINMCEnIiIiIiIi0gATciIiIiIiIiINMCEnIiIiIiIi0gATciIiIiIiIiINMCEnIiK6g+h0OsyZM0frMO54sbGx0Ol0iI2NLXO7OXPmQKfTIS0trXYCq8MSExOh0+mwdu3aSu97K/pxzJgx8PX1rbHyiIiqggk5ERFRBaxduxY6nc7k5enpid69e+O7777TOrxqO3HiBObMmYPExEStQ6Eq6NWrl8lns0GDBujSpQs+/vhjFBcXax0eERGVQq91AERERLeTefPmwc/PDyKCK1euYO3atRgwYAD+97//ISIiQuvwquzEiROYO3cuevXqxbOGt6mmTZsiOjoaAJCamopPP/0U48aNw+nTp/HGG29oHB0REVnChJyIiKgSwsLC0LlzZ/XvcePGwcvLC59//vltnZDXpqKiIhQXF8PW1lbrUO4orq6uePLJJ9W/J0yYgNatW2P58uX497//DRsbG7N9iouLUVBQAHt7+9oMlYiI/h9/sk5ERFQNbm5ucHBwgF5v+h13Tk4OXnrpJTRr1gx2dnZo3bo13nrrLYgIACAvLw9t2rRBmzZtkJeXp+537do1eHt744EHHoDBYABw81pXZ2dnnD17Fv369YOTkxMaN26MefPmqeWV5c8//0RYWBhcXFzg7OyMhx56CL/88ou6fu3atXjssccAAL1791Z/9lze9dFffvkl2rVrB3t7ewQGBmLLli1m1+Uq1w2/9dZbWLJkCfz9/WFnZ4cTJ04AAH766SeEhITAyckJbm5uGDhwIP766y+Tekq71le5rtiYTqfDCy+8gPXr16N169awt7dHp06dsHv3brP9k5KS8NRTT8HLywt2dnZo3749Pv74Y7PtLl68iEGDBsHJyQmenp745z//ifz8/DL7pqS0tDQ8/vjjcHFxQcOGDTF58mTcuHFDXR8aGop77rnH4r6tW7dGv379KlUfADg6OuK+++5DTk4OUlNTAZj2T/v27WFnZ4fvv/8eQPmfkz/++AM6nQ6ffPKJWV3btm2DTqdDTExMpWI8cuQIxowZgxYtWsDe3h6NGjXCU089hatXr1rcvrx+VHz22Wfo1KkTHBwc0KBBAzzxxBO4cOFCpWIjIqoNPENORERUCZmZmUhLS4OIICUlBcuWLUN2drbJmUkRwSOPPIKdO3di3LhxCA4OxrZt2xAVFYWkpCS88847cHBwwCeffILu3bvjX//6F95++20AwMSJE5GZmYm1a9fC2tpaLdNgMKB///647777sHDhQnz//feYPXs2ioqKMG/evFLjPX78OEJCQuDi4oLp06fDxsYGq1atQq9evbBr1y5069YNPXv2xKRJk/Duu+/i5ZdfRtu2bQFA/a8lW7duxbBhwxAUFITo6Gikp6dj3LhxaNKkicXt16xZgxs3buCZZ56BnZ0dGjRogB9//BFhYWFo0aIF5syZg7y8PCxbtgzdu3fHwYMHq/zT+V27dmHjxo2YNGkS7OzssGLFCvTv3x+//fYbAgMDAQBXrlzBfffdpyaoHh4e+O677zBu3DhkZWVhypQpAG5+cfLQQw/h/PnzmDRpEho3box169bhp59+qlRMjz/+OHx9fREdHY1ffvkF7777LtLT0/Hpp58CAEaOHInx48fj2LFjaowA8Pvvv+P06dN45ZVXqtQXZ8+ehbW1Ndzc3NRlP/30E7744gu88MILcHd3h6+vb4U+J507d0aLFi3wxRdfYPTo0Sb1bNy4EfXr16/0Fwc//PADzp49i7Fjx6JRo0Y4fvw4PvjgAxw/fhy//PKL2Rcu5fUjALz++ut49dVX8fjjj+Ppp59Gamoqli1bhp49e+LPP/806QsiIs0JERERlWvNmjUCwOxlZ2cna9euNdn266+/FgAyf/58k+VDhw4VnU4nZ86cUZfNmjVLrKysZPfu3fLll18KAFmyZInJfqNHjxYA8uKLL6rLiouLJTw8XGxtbSU1NVVdDkBmz56t/j1o0CCxtbWV+Ph4ddmlS5ekXr160rNnT3WZUvfOnTsr1B9BQUHStGlTuX79urosNjZWAIiPj4+6LCEhQQCIi4uLpKSkmJQRHBwsnp6ecvXqVXXZ4cOHxcrKSkaNGmXSfuMyFbNnz5aShzLK+/LHH3+oy86dOyf29vYyePBgddm4cePE29tb0tLSTPZ/4oknxNXVVXJzc0VEZMmSJQJAvvjiC3WbnJwcadmyZYX6S4nxkUceMVn+/PPPCwA5fPiwiIhkZGSIvb29zJgxw2S7SZMmiZOTk2RnZ5dZT2hoqLRp00ZSU1MlNTVV/vrrL5k0aZIAkMjISJP+sbKykuPHj5vsX9HPyaxZs8TGxkauXbumLsvPzxc3Nzd56qmnyoxR+SysWbNGXab0s7HPP/9cAMju3bvVZRXtx8TERLG2tpbXX3/dZLujR4+KXq83WV7a54qIqDbxJ+tERESV8N577+GHH37ADz/8gM8++wy9e/fG008/jc2bN6vbfPvtt7C2tsakSZNM9n3ppZcgIiZ3ZZ8zZw7at2+P0aNH4/nnn0doaKjZfooXXnhB/bdyZregoAA//vijxe0NBgO2b9+OQYMGoUWLFupyb29vDB8+HD///DOysrIq3QeXLl3C0aNHMWrUKDg7O6vLQ0NDERQUZHGfIUOGwMPDQ/07OTkZhw4dwpgxY9CgQQN1eYcOHdCnTx98++23lY5Lcf/996NTp07q382bN8fAgQOxbds2GAwGiAg2bdqEyMhIiAjS0tLUV79+/ZCZmYmDBw8CuPleent7Y+jQoWp5jo6OeOaZZyoV08SJE03+fvHFF9XygZvXfw8cOBCff/65ehmCwWDAxo0b1Z/Ll+fkyZPw8PCAh4cH2rZti2XLliE8PNzsZ/ihoaFo166d+ndlPifDhg1DYWGhyed9+/btyMjIwLBhwyrTJQAABwcH9d83btxAWloa7rvvPgBQ3wNj5fXj5s2bUVxcjMcff9zkfW3UqBECAgKwc+fOSsdIRHQrMSEnIiKqhK5du+Lhhx/Gww8/jBEjRmDr1q1o166dmhwDwLlz59C4cWPUq1fPZF/lJ+Dnzp1Tl9na2uLjjz9GQkICrl+/jjVr1pj9TBcArKysTJIlAGjVqhUAlPqostTUVOTm5qJ169Zm69q2bYvi4uIqXVerxN+yZUuzdZaWAYCfn5/FMkqLLS0tDTk5OZWODQACAgLMlrVq1Qq5ublITU1FamoqMjIy8MEHH6gJrPIaO3YsACAlJUWNs2XLlmbviaW4KxOTv78/rKysTN67UaNG4fz589izZw8A4Mcff8SVK1cwcuTICtXh6+uLH374AT/++CN+/vlnXL58GTExMXB3dzfZruR7UZnPyT333IM2bdpg48aN6jYbN26Eu7s7HnzwwQrFaezatWuYPHkyvLy84ODgAA8PDzW+zMxMs+3L68e4uDiICAICAsze27/++kt9X4mI6gpeQ05ERFQNVlZW6N27N5YuXYq4uDi0b9++0mVs27YNwM0zhHFxcWYJ053A+ExoZVn6ggKAetO7ylKey/3kk0+aXQut6NChQ5XKrihLberXrx+8vLzw2WefoWfPnvjss8/QqFEjPPzwwxUq08nJqULbVue9AG6eJX/99deRlpaGevXq4b///S/+8Y9/mN3YsCIef/xx7Nu3D1FRUQgODoazszOKi4vRv3//Cj0/vWQ/FhcXQ6fT4bvvvjO5B4PC+BcdRER1ARNyIiKiaioqKgIAZGdnAwB8fHzw448/4vr16yZnyU+ePKmuVxw5cgTz5s3D2LFjcejQITz99NM4evQoXF1dTeooLi7G2bNn1bPiAHD69GkAKPXmZx4eHnB0dMSpU6fM1p08eRJWVlZo1qwZgNKTXkuU+M+cOWO2ztKyssooLTZ3d3f1Z9r169dHRkaG2XbGvzQwFhcXZ7bs9OnTcHR0VH82X69ePRgMhnITWB8fHxw7dgwiYtJHluIuS8kvWs6cOYPi4mKT987a2hrDhw/H2rVr8eabb+Lrr7/G+PHjLSaWNakynxPgZkI+d+5cbNq0CV5eXsjKysITTzxR6XrT09OxY8cOzJ07F6+99pq63NL7Z7yurH709/eHiMDPz8/k/xUiorqKP1knIiKqhsLCQmzfvh22trbqT9IHDBgAg8GA5cuXm2z7zjvvQKfTISwsTN13zJgxaNy4MZYuXYq1a9fiypUr+Oc//2mxLuPyRATLly+HjY0NHnroIYvbW1tbo2/fvvjmm29Mfhp95coV/Oc//0GPHj3g4uICAGryaynxLalx48YIDAzEp59+qn4JAdy8u/nRo0fL3R+4eX1ycHAwPvnkE5M6jx07hu3bt2PAgAHqMn9/f2RmZuLIkSPqsuTkZGzZssVi2fv37ze5/vjChQv45ptv0LdvX1hbW8Pa2hpDhgzBpk2bcOzYMbP9lUeEATffy0uXLuGrr75Sl+Xm5uKDDz6oUDsV7733nsnfy5YtAwD1s6AYOXIk0tPTMWHCBLO7998qlfmcADd/xh4UFISNGzdi48aN8Pb2Rs+ePatULwCzR/ctWbKk1H3K68dHH30U1tbWmDt3rlm5IlLq49SIiLTCM+RERESV8N1336lnulNSUvCf//wHcXFxmDlzppq0REZGonfv3vjXv/6FxMRE3HPPPdi+fTu++eYbTJkyBf7+/gCA+fPn49ChQ9ixYwfq1auHDh064LXXXsMrr7yCoUOHmiSl9vb2+P777zF69Gh069YN3333HbZu3YqXX37Z5GZpJc2fPx8//PADevTogeeffx56vR6rVq1Cfn4+Fi5cqG4XHBwMa2trvPnmm8jMzISdnR0efPBBeHp6Wix3wYIFGDhwILp3746xY8ciPT0dy5cvR2BgoEmSXpZFixYhLCwM999/P8aNG6c+9szV1RVz5sxRt3viiScwY8YMDB48GJMmTUJubi7ef/99tGrVyuKNvwIDA9GvXz+Tx54BwNy5c9Vt3njjDezcuRPdunXD+PHj0a5dO1y7dg0HDx7Ejz/+iGvXrgEAxo8fj+XLl2PUqFE4cOAAvL29sW7dOjg6OlaojYqEhAQ88sgj6N+/P/bv34/PPvsMw4cPN3v2eMeOHREYGIgvv/wSbdu2xb333lupeqqqop8TxbBhw/Daa6/B3t4e48aNg5VV5c/xuLi4oGfPnli4cCEKCwvRpEkTbN++HQkJCaXuU14/+vv7Y/78+Zg1axYSExMxaNAg1KtXDwkJCdiyZQueeeYZTJs2rdKxEhHdMhrd3Z2IiOi2YumxZ/b29hIcHCzvv/++FBcXm2x//fp1+ec//ymNGzcWGxsbCQgIkEWLFqnbHThwQPR6vcmjzEREioqKpEuXLtK4cWNJT08XkZuPZ3JycpL4+Hjp27evODo6ipeXl8yePVsMBoPJ/ijx2DMRkYMHD0q/fv3E2dlZHB0dpXfv3rJv3z6zNq5evVpatGgh1tbWFXqk14YNG6RNmzZiZ2cngYGB8t///leGDBkibdq0UbdRHnW1aNEii2X8+OOP0r17d3FwcBAXFxeJjIyUEydOmG23fft2CQwMFFtbW2ndurV89tlnpT72bOLEifLZZ59JQECA2NnZSceOHS225cqVKzJx4kRp1qyZ2NjYSKNGjeShhx6SDz74wGS7c+fOySOPPCKOjo7i7u4ukydPlu+//75Sjz07ceKEDB06VOrVqyf169eXF154QfLy8izus3DhQgEgCxYsKLNsY6GhodK+fftyt1P6x5KKfk5EROLi4tT/D37++ecKxWjpsWcXL16UwYMHi5ubm7i6uspjjz0mly5dMvscV7YfN23aJD169BAnJydxcnKSNm3ayMSJE+XUqVPqNnzsGRHVBTqREr/nISIiojplzJgx+Oqrryp85llLwcHB8PDwwA8//KBJ/TqdDhMnTjS7XOB2snTpUvzzn/9EYmIimjdvrnU4RER0C/EaciIiIqq0wsJC9WZ2itjYWBw+fBi9evXSJqg7gIjgo48+QmhoKJNxIqK7AK8hJyIiokpLSkrCww8/jCeffBKNGzfGyZMnsXLlSjRq1AjPPvus1uHddnJycvDf//4XO3fuxNGjR/HNN99oHRIREdUCJuRERERUafXr10enTp3w4YcfIjU1FU5OTggPD8cbb7yBhg0bah3ebSc1NRXDhw+Hm5sbXn75ZTzyyCNah0RERLWA15ATERERERERaYDXkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERHRHcbX1xdjxozROoxKS0xMhE6nw9q1a7UOxcycOXOg0+k0q//ChQuwt7fH3r171WW9evVCYGCgZjFVVWFhIZo1a4YVK1ZoHQoRkeaYkBMREd0mjh49iqFDh8LHxwf29vZo0qQJ+vTpg2XLlmkd2h0hNzcXc+bMQWxsrNahmJk3bx66deuG7t27ax1KtdnY2GDq1Kl4/fXXcePGDa3DISLSFBNyIiKi28C+ffvQuXNnHD58GOPHj8fy5cvx9NNPw8rKCkuXLtU6vDtCbm4u5s6dazEhf+WVV5CXl1f7QQFITU3FJ598gmeffVaT+m+FsWPHIi0tDf/5z3+0DoWISFN6rQMgIiKi8r3++utwdXXF77//Djc3N5N1KSkp2gRVxxUVFaG4uBi2trbVLkuv10Ov1+aw6bPPPoNer0dkZKQm9VdUTk4OnJycKrStm5sb+vbti7Vr1+Kpp566xZEREdVdPENORER0G4iPj0f79u3NknEA8PT0LHf/jIwMTJkyBc2aNYOdnR1atmyJN998E8XFxSbbFRcXY8mSJWjfvj3s7e3h5eWFCRMmID093WQ7X19fREREYPv27QgODoa9vT3atWuHzZs3V6g9GRkZGDNmDFxdXeHm5obRo0cjIyPDbLtevXqhV69eZsvHjBkDX19f9W/l+vO33noLS5Ysgb+/P+zs7HDixAkUFBTgtddeQ6dOneDq6gonJyeEhIRg586dJvt7eHgAAObOnQudTgedToc5c+YAsHwNeVFREf7973+rdfn6+uLll19Gfn6+xb76+eef0bVrV9jb26NFixb49NNPK9RXX3/9Nbp16wZnZ2eL60+cOIHevXvD0dERTZo0wcKFC822SUlJwbhx4+Dl5QV7e3vcc889+OSTT0y2iY2NhU6nM/uFgKVr+8eMGQNnZ2fEx8djwIABqFevHkaMGAEAiIuLw5AhQ9CoUSPY29ujadOmeOKJJ5CZmWlSbp8+ffDzzz/j2rVrFeoHIqI7ERNyIiKi24CPjw8OHDiAY8eOVXrf3NxchIaG4rPPPsOoUaPw7rvvonv37pg1axamTp1qsu2ECRMQFRWF7t27Y+nSpRg7dizWr1+Pfv36obCw0GTbuLg4DBs2DGFhYYiOjoZer8djjz2GH374ocx4RAQDBw7EunXr8OSTT2L+/Pm4ePEiRo8eXem2lbRmzRosW7YMzzzzDBYvXowGDRogKysLH374IXr16oU333wTc+bMQWpqKvr164dDhw4BADw8PPD+++8DAAYPHox169Zh3bp1ePTRR0ut6+mnn8Zrr72Ge++9F++88w5CQ0MRHR2NJ554wmzbM2fOYOjQoejTpw8WL16M+vXrY8yYMTh+/HiZ7SksLMTvv/+Oe++91+L69PR09O/fH/fccw8WL16MNm3aYMaMGfjuu+/UbfLy8tCrVy+sW7cOI0aMwKJFi+Dq6ooxY8ZU63KHoqIi9OvXD56ennjrrbcwZMgQFBQUoF+/fvjll1/w4osv4r333sMzzzyDs2fPmn3h0qlTJ4gI9u3bV+UYiIhue0JERER13vbt28Xa2lqsra3l/vvvl+nTp8u2bdukoKDAbFsfHx8ZPXq0+ve///1vcXJyktOnT5tsN3PmTLG2tpbz58+LiMiePXsEgKxfv95ku++//95suY+PjwCQTZs2qcsyMzPF29tbOnbsWGZbvv76awEgCxcuVJcVFRVJSEiIAJA1a9aoy0NDQyU0NNSsjNGjR4uPj4/6d0JCggAQFxcXSUlJMdm2qKhI8vPzTZalp6eLl5eXPPXUU+qy1NRUASCzZ882q2/27NlifNh06NAhASBPP/20yXbTpk0TAPLTTz+py5S+2r17t7osJSVF7Ozs5KWXXjKry9iZM2cEgCxbtsxsXWhoqACQTz/9VF2Wn58vjRo1kiFDhqjLlixZIgDks88+U5cVFBTI/fffL87OzpKVlSUiIjt37hQAsnPnTpN6lL41fl9Gjx4tAGTmzJkm2/75558CQL788ssy2yUicunSJQEgb775ZrnbEhHdqXiGnIiI6DbQp08f7N+/H4888ggOHz6MhQsXol+/fmjSpAn++9//lrnvl19+iZCQENSvXx9paWnq6+GHH4bBYMDu3bvV7VxdXdGnTx+T7Tp16gRnZ2eTn3gDQOPGjTF48GD1bxcXF4waNQp//vknLl++XGo83377LfR6PZ577jl1mbW1NV588cWqdI2JIUOGqD89Ny5buY68uLgY165dQ1FRETp37oyDBw9WqZ5vv/0WAMx+YfDSSy8BALZu3WqyvF27dggJCVH/9vDwQOvWrXH27Nky67l69SoAoH79+hbXOzs748knn1T/trW1RdeuXU3K/fbbb9GoUSP84x//UJfZ2Nhg0qRJyM7Oxq5du8qMoSzG7yEAuLq6AgC2bduG3NzcMvdV2pSWllbl+omIbndMyImIiG4TXbp0webNm5Geno7ffvsNs2bNwvXr1zF06FCcOHGi1P3i4uLw/fffw8PDw+T18MMPA/j7pnBxcXHIzMyEp6en2bbZ2dlmN49r2bKl2XXVrVq1AnDzuuPSnDt3Dt7e3mbXRLdu3brCfVEaPz8/i8s/+eQTdOjQAfb29mjYsCE8PDywdetWs+uaK+rcuXOwsrJCy5YtTZY3atQIbm5uOHfunMny5s2bm5VRv359s2vzSyMiFpc3bdrU7D0oWe65c+cQEBAAKyvTw762bduq66tCr9ejadOmJsv8/PwwdepUfPjhh3B3d0e/fv3w3nvvWexnpU1aPt+diEhrvMs6ERHRbcbW1hZdunRBly5d0KpVK4wdOxZffvklZs+ebXH74uJi9OnTB9OnT7e4Xkmii4uL4enpifXr11vcruSZ59qg0+ksJqMGg8Hi9g4ODmbLPvvsM4wZMwaDBg1CVFQUPD09YW1tjejoaMTHx1c7voqwtra2uLy0RFvRsGFDACg1ca9quZaU1pbS+trOzs4syQeAxYsXY8yYMfjmm2+wfft2TJo0CdHR0fjll19MEnilTe7u7pWOlYjoTsGEnIiI6DbWuXNnAEBycnKp2/j7+yM7O1s9I17Wdj/++CO6d+9uMbEt6cyZMxARk0Tu9OnTAGByB/SSfHx8sGPHDmRnZ5ucJT916pTZtvXr17f4s+7KnNX96quv0KJFC2zevNkk1pJfYFTmTK2Pjw+Ki4sRFxennmkGgCtXriAjIwM+Pj4VLqsszZs3h4ODAxISEqpcho+PD44cOYLi4mKTBPrkyZPqeuDvn5CXvPlaVc6gBwUFISgoCK+88gr27duH7t27Y+XKlZg/f766jdIm4/4jIrrb8CfrREREt4GdO3daPOupXMtc1s+9H3/8cezfvx/btm0zW5eRkYGioiJ1O4PBgH//+99m2xUVFZklapcuXcKWLVvUv7OysvDpp58iODgYjRo1KjWeAQMGoKioSL2rOXDzLOyyZcvMtvX398fJkyeRmpqqLjt8+DD27t1bavklKWeRjfvv119/xf79+022c3R0BGCekJbWBgBYsmSJyfK3334bABAeHl7h+MpiY2ODzp07448//qhyGQMGDMDly5exceNGdVlRURGWLVsGZ2dnhIaGAriZmFtbW6v3FFCsWLGiwnVlZWWpnydFUFAQrKyszB4Hd+DAAeh0Otx///2VbRIR0R2DZ8iJiIhuAy+++CJyc3MxePBgtGnTBgUFBdi3bx82btwIX19fjB07ttR9o6Ki8N///hcREREYM2YMOnXqhJycHBw9ehRfffUVEhMT4e7ujtDQUEyYMAHR0dE4dOgQ+vbtCxsbG8TFxeHLL7/E0qVLMXToULXcVq1aYdy4cfj999/h5eWFjz/+GFeuXMGaNWvKbEtkZCS6d++OmTNnIjExUX1+uaXrjJ966im8/fbb6NevH8aNG4eUlBSsXLkS7du3R1ZWVoX6LiIiAps3b8bgwYMRHh6OhIQErFy5Eu3atUN2dra6nYODA9q1a4eNGzeiVatWaNCgAQIDAxEYGGhW5j333IPRo0fjgw8+QEZGBkJDQ/Hbb7/hk08+waBBg9C7d+8KxVYRAwcOxL/+9S9kZWXBxcWl0vs/88wzWLVqFcaMGYMDBw7A19cXX331Ffbu3YslS5agXr16AG7ekO2xxx7DsmXLoNPp4O/vj5iYGLN7B5Tlp59+wgsvvIDHHnsMrVq1QlFREdatWwdra2sMGTLEZNsffvgB3bt3V3+WT0R0V9LuBu9ERERUUd9995089dRT0qZNG3F2dhZbW1tp2bKlvPjii3LlyhWTbUs+9kxE5Pr16zJr1ixp2bKl2Nrairu7uzzwwAPy1ltvmT067YMPPpBOnTqJg4OD1KtXT4KCgmT69Oly6dIlkzrCw8Nl27Zt0qFDB7Gzs5M2bdpU6HFXIiJXr16VkSNHiouLi7i6usrIkSPVR2YZP15LROSzzz6TFi1aiK2trQQHB8u2bdtKfezZokWLzOoqLi6WBQsWiI+Pj9jZ2UnHjh0lJibGrAwRkX379kmnTp3E1tbW5BFoJR97JiJSWFgoc+fOFT8/P7GxsZFmzZrJrFmz5MaNGybbKX1VUmmPdCvpypUrotfrZd26dWb7t2/f3mx7S+26cuWKjB07Vtzd3cXW1laCgoLM+lnk5qPfhgwZIo6OjlK/fn2ZMGGCHDt2zOJjz5ycnMz2P3v2rDz11FPi7+8v9vb20qBBA+ndu7f8+OOPJttlZGSIra2tfPjhh+W2n4joTqYTqcJdP4iIiOiu5uvri8DAQMTExGgdyl1h3LhxOH36NPbs2aN1KDViyZIlWLhwIeLj4yt0vwIiojsVryEnIiIiquNmz56N33//vVLXztdVhYWFePvtt/HKK68wGSeiux6vISciIiKq45o3b44bN25oHUaNsLGxwfnz57UOg4ioTuAZciIiIiIiIiIN8BpyIiIiIiIiIg3wDDkRERERERGRBngNOd2xiouLcenSJdSrVw86nU7rcIiIiIiI6A4mIrh+/ToaN24MK6uKnftmQk53rEuXLqFZs2Zah0FERERERHeRCxcuoGnTphXalgk53bHq1asH4Ob/EC4uLhpHQ0REREREd7KsrCw0a9ZMzUMqggk53bGUn6m7uLgwISciIiIiolpRmctleVM3IiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg3otQ6AiIhICwlpOcjJL9I6jNuCk50efu5OWodBRER0x2FCTkREd52EtBz0fitW6zBM6PRZsHH7FYUZ3SBFLlqHY2bntF5MyomIiGoYE3IiIrrrKGfGlwwLRktPZ42juSkh6xRe/m0BFocPh59La63DUZ1JycaUjYf4awIiIqJbgAk5ERHdtVp6OiOwiavWYQAArOxvfjHg7+mMdg3rRkxERER0a/GmbkREREREREQaYEJOREREREREpAEm5EREREREREQaYEJOREREREREpAEm5ERENSQ3NxcHDx5Ebm6u1qEQEZng+EREVDcxISciqiEnT55Ep06dcPLkSa1DISIywfGJiKhuYkJOREREREREpAE+h5yIbgmDwYA9e/YgOTkZ3t7eCAkJgbW19S2vNy8vD1FRUYiLi0NAQAAWLVoEBwcHs7iSkpKQmpoKDw8PNGrUCACQkpJiFqtW7SAiqi2WxsUmTZogJCQEeXl5GDlyJOLj4+Hv749169bB2dm5zH3LGlMrWm9546ylsRmAuszT07NCMdSGmppHqlNOXZrLaiOWqtRRl/qoom7HmKvijm+nUJ2xc+dOASDp6em1Wu/o0aNl4MCBtVpnbcjMzBQAkpmZqXUod51NmzaJr6+vAFBfvr6+smnTplta78CBA03qVF7K59tSXJZeSqyVbceBAwcEgBw4cOCWtpOq7+jFDPGZESNHL2ZoHYrqeNpxCVwbKMfTjmsdiom62FdUeaWNT2WNi7a2thaXd+nSpdx9yxs3y9q3vPnC0r6enp7i4eFRqRhqQ03Nh9UpR6s5WatYqlJHXeqjirodY66K262dVck/+JP1SkpNTcVzzz2H5s2bw87ODo0aNUK/fv2wd+9erUMDAPTq1QtTpkzROgy6i23evBlDhw5FUFAQ9u/fj+vXr2P//v0ICgrC0KFDsXnz5ltS76BBg/DNN9/A1tYWM2fOxJkzZzBz5kzY2trim2++QdeuXTF06FC4u7sDAMLCwvDcc8+p+7dp0wY6nQ7R0dFqrEOGDKn1dhAR1RZlvHZ3d4dOp0NYWBhWr16NsLAwAEBBQQEAIDQ0FIcPH8bIkSOh0+nw+++/o2XLlpUeU5Vxs7x63d3dSx1nLc0x0dHRSElJQWpqKkaMGAGdTocePXqgR48eAGAxhtpQU/NhdcrRak7WKpaq1FGX+qiibseYq+JuaSfPkFdSSEiIdOvWTX766SdJTEyUX3/9VRYsWCDffPNNtcuuiTPkoaGhMnny5ErtwzPkVFOKiorE19dXIiMjxWAwmKwzGAwSGRkpfn5+UlRUVKP15ubmqmdz8vPzTdbl5+eLjY2NAJCwsDDx8fGRyMhIKSgoEF9fX4mIiJCIiAjx8/NT/5uXlycODg7i6OgoBQUFFW4Hz5DfPuriWV+eIadbqeT4pIzXERERZuO2Mn8CkAEDBpiMd3l5eeq6/v37V2hMLSgoUMfN/Pz8UutVxldlfclx1tIcY9yO8PBw0ev1EhERIQaDwWS8No6hpucgS2pqPqxOOVrNyZbURixVqaMu9VFF3Y4xV8Xt2s6q5B+8hrwSMjIysGfPHsTGxiI0NBQA4OPjg65du6rbvP3221izZg3Onj2LBg0aIDIyEgsXLlSvtzp37hxeeOEF/PzzzygoKICvry8WLVqEAQMGmNWXm5uLIUOGICsrC1u3boXBYMALL7yA3bt3Iz09Hf7+/nj55Zfxj3/8AwAwZswY7Nq1C7t27cLSpUsBAAkJCfD19cXx48cxY8YM7N69GyKC4OBgrF27Fv7+/mp9b731FhYvXoyCggI88cQTWLJkCWxsbAAA+fn5+Ne//oXPP/8cGRkZCAwMxJtvvolevXpBRODp6Yn3338fQ4cOBQAEBwfjypUrSE5OBgD8/PPPeOihh5Ceng5HR8dy+2nt2rWYMmUKNm7ciClTpuDChQvo0aMH1qxZA29vb4vvT35+PvLz89W/s7KyqvAuU3Xs2bMHiYmJ+Pzzz2FlZfoDHCsrK8yaNQsPPPAA9uzZg169etVYvVFRUQCAqVOnwtbW1mSdra0thgwZgg0bNiAnJwfnzp3Dhg0bsHfvXjVWEcEDDzyAl156CTExMVi5ciXy8vIAAHv37jWJtax23Cg0AADOpFyHbVJmjbWPat6ZlGwAf79nVLq/P9fZGkdC1XEm5TqAv99PZbyOiopCTEyMybg9evRodb8BAwbg22+/Vcc7e3t7PPzww/jxxx9x6dKlCo2pe/fuVcfNFStWlFqv8fg6bdo0xMTEmIyzluYY42UHDhzA1q1bERYWpq5XyjOOoabnIEtqaj6sTjlazck13Y5bWUdd6qOKuh1jroq7pZ0Ab+pWKc7OznB2dsbXX3+N++67D3Z2dmbbWFlZ4d1334Wfnx/Onj2L559/HtOnT8eKFSsAABMnTkRBQQF2794NJycnnDhxwuTmKIqMjAyEh4fD2dkZP/zwAxwdHZGUlIROnTphxowZcHFxwdatWzFy5Ej4+/uja9euWLp0KU6fPo3AwEDMmzcPAODh4YGkpCT07NkTvXr1wk8//QQXFxfs3bsXRUVFan07d+6Et7c3du7ciTNnzmDYsGEIDg7G+PHjAQAvvPACTpw4gQ0bNqBx48bYsmUL+vfvj6NHjyIgIAA9e/ZEbGwshg4divT0dPz1119wcHDAyZMn0aZNG+zatQtdunSBo6NjhfoJuPmFxFtvvYV169bBysoKTz75JKZNm4b169dbfH+io6Mxd+7cKr67VBOUL2ACAwMtrleWK9vVlLi4OADA008/bXF9ly5dsGHDBqSlpalx/O9//1P/LSIAoN78LT4+Xt3XUqylteNi+s3n+07ecAh2sUxebgcX0/PQ2VfrKOq2i+k3v5yasvGQtoFQteRfPgPg73FKGb+Ucc943DYeA5X1xuNd79698eOPP+Lq1avqvmWNqcnJyYiIiDAp21K9xn9bqtfSHGO87MSJEyb7Gm9rHENNz0GW1NR8WJ1ytJqTLamNWKpSR13qo4q6HWOuirulnQAT8krR6/VYu3Ytxo8fj5UrV+Lee+9FaGgonnjiCXTo0AEATK7f9vX1xfz58/Hss8+qieb58+fV61IBoEWLFmb1XL58GcOGDUNAQAD+85//qGf8mjRpgmnTpqnbvfjii9i2bRu++OILdO3aFa6urrC1tYWjo6N6h1MAeO+99+Dq6ooNGzaoZ7xbtWplUmf9+vWxfPlyWFtbo02bNggPD8eOHTswfvx4nD9/HmvWrMH58+fRuHFjAMC0adPw/fffY82aNViwYAF69eqFVatWAQB2796Njh07olGjRoiNjUWbNm1MflVQkX4CgMLCQqxcuVI9i//CCy+oXzRYMmvWLEydOlX9OysrC82aNSt1e6p5yq8Xjh07hvvuu89s/bFjx0y2qykBAQHYvn07PvzwQ0RHR5ut//333wFAvdbx2LFjJrEqB4/KWXHjX45YirW0djStf/MLp6VPBKNdUHB1mkS32JmUbEzZeAhN6zuUv/FdTumjJcOC0dLT/Atkuj2cOOqMYZ/8PU4p45cy7hmP2/7+/jh69KjJeuPxbufOnQCAhg0bIikpqdwx1dvbWx03lfHVUr3K36XVa2mOMV6m7KP817g84xhqeg6ypKbmw+qUo9WcbEltxFKVOupSH1XU7RhzVdwt7QTAa8irIi8vT7Zv3y7z5s2T+++/X6ytrWXNmjUiIvLDDz/Igw8+KI0bNxZnZ2ext7cXAJKTkyMiIqtXrxa9Xi8PPPCAvPbaa3L48GG1XOUa8qZNm8qjjz5qdk1EUVGRzJs3TwIDA6V+/fri5OQker1eHnvsMXUbS9eQh4WFyahRo0ptz+jRo2XAgAEmyyZNmiS9e/cWEZGYmBgBIE5OTiYvvV4vjz/+uIiIHD58WHQ6naSkpMg///lPmTFjhrzzzjsybNgwKSgoEEdHR9m+fbtafnn9tGbNGnF0dDSJafPmzaLT6UptR0m8hrz28RpyXkN+u6iL10XzGnK6lXgNOa8hr2oMNYHXkNec2zHmqrhd21mV/IMJeQ0YN26cNG/eXBISEsTOzk6mTJki+/fvl1OnTslHH31kdqO28+fPy/vvvy+DBw8WGxsbeffdd0Xk74R8woQJ4u7uLkeOHDGpJzo6Who2bCjr1q2TQ4cOSVxcnISHh5vckM1SQv7oo4+Wm5CXvKnb5MmTJTQ0VERENmzYINbW1nLy5EmJi4szeSUnJ4uISHFxsTRs2FC+/PJLuffee+W7776TP//8Uxo1aiR79+4VGxsbyc7OFhGpUD+tWbNGXF1dTWLasmWLVOY7JCbk2ti0aZPodDqJjIyUffv2SVZWluzbt08iIyNFp9PdssdUKI88s7W1lenTp8upU6dk+vTp6mN7unTpIjqdTjp37qwm588++6x6YNmmTRvR6XSyYMECNVYAlWoHE/LbR11MMpmQ061kaXxSxuvOnTuLTqeTsLAwWbVqlYSFhZk8YigkJEQOHDggI0aMUMdGf3//So+pyrhZXr3KckvjrKU5ZsGCBWq9w4cPF51OJz169JDu3bsLAIsx1Iaamg+rU45Wc7JWsVSljrrURxV1O8ZcFbdjO5mQa2Tx4sXSsGFD+eqrr8TGxsbkW5x///vfZd45febMmRIUFCQipndZf+mll8TDw0OOH//7wCwiIkKeeuop9W+DwSABAQEmyXSfPn3khRdeMKljzpw56rfDlpSXkJ86dUoAyO7du8vsh0GDBsmTTz4pdnZ2cv36dTEYDFK/fn0ZNWqU3H///ep2FeknJuS3N0vPjPTz87ttnkOuxFrZdjAhv33UxSSTCTndSlV5DrmdnZ3F5ZV9DrmlcbOsfcubL6ryHPLamIMqGmtVYqlOOVrNyVrFUpU66lIfVdTtGHNV3G7t5F3Wb7GrV6/isccew1NPPYUOHTqgXr16+OOPP7Bw4UIMHDgQLVu2RGFhIZYtW4bIyEjs3bsXK1euNCljypQpCAsLQ6tWrZCeno6dO3eibdu2ZnW99dZbMBgMePDBB9XrsAMCAvDVV19h3759qF+/Pt5++21cuXIF7dq1U/fz9fXFr7/+isTERDg7O6NBgwZ44YUXsGzZMjzxxBOYNWsWXF1d8csvv6Br165o3bp1ue1u1aoVRowYgVGjRmHx4sXo2LEjUlNTsWPHDnTo0AHh4eEAbj4D/aWXXkLnzp3VG9X17NkT69evV++CDaBC/US3t0cffRQDBw7Enj17kJycDG9vb4SEhMDa2vqW1vv1118jLy8PUVFRiIuLQ0BAABYtWqTe4Mc4rqSkJKSmpsLDw0O950JKSopZrFq0g4iotpQ2LjZp0gQhISHIy8vDyJEjER8fD39/f6xbt06d46sypla03rLG2dLmGADqMk9Pz3JjqA01NR9Wpxyt5mStYqlKHXWpjyrqdoy5Ku6Kdt7CLwjuODdu3JCZM2fKvffeK66uruLo6CitW7eWV155RXJzc0VE5O233xZvb29xcHCQfv36yaeffmpy5veFF14Qf39/sbOzEw8PDxk5cqSkpaWJiOXnkL/44ovi7e0tp06dkqtXr8rAgQPF2dlZPD095ZVXXpFRo0aZnN0+deqU3HfffeLg4CAAJCEhQURuXuPdt29fcXR0lHr16klISIjEx8eLSPlnyEVECgoK5LXXXhNfX1+xsbERb29vGTx4sMnP6v/8808BIDNmzFCXvfPOOwJAvv/+e5Pyy+snniGn2xHPkN8+6uJZX54hp1uJ4xMR0a1XlfxDJ/L/t8IkusNkZWXB1dUVmZmZcHFx0TocugscPHgQnTp1woEDB3DvvfdqHQ6V4VhSJiKW/YyYF3sgsImr1uEAAE5cPYFhMcOwMWIj2jVsV/4OtaQu9hVVHscnIqJbryr5h1X5mxARERERERFRTWNCTkRUQ9q0aYMDBw6gTZs2WodCRGSC4xMRUd3Em7oREdUQR0dH/hSUiOokjk9ERHUTz5ATERERERERaYAJOREREREREZEGmJATERERERERaYDXkBMR0V0nr9AA4OYjveqKhKxsAEB8SjaKb9SduM6kZGsdAhER0R2LCTkREd114v8/yZy5+ajGkfxNp8+CjdtDmLQ+HlKUqnU4ZpzseMhARERU0zi7EhHRXadv+0YAAH9PZzjYWGscjbEBWgdgkZOdHn7uTlqHQUREdMdhQk5ERHedBk62eKJrc63DICIiorscb+pGREREREREpAEm5EREREREREQaYEJOREREREREpAEm5EREREREREQaYEJOREREREREpAEm5EREREREREQaYEJOREREREREpAEm5EREREREREQaYEJOREREREREpAEm5EREREREREQaYEJOREREREREpAEm5EREREREREQaYEJOREREREREpAEm5EREREREREQaYEJOREREREREpAEm5EREREREREQaYEJOREREREREpAEm5EREREREREQaYEJOREREREREpAEm5EREREREREQaYEJOREREREREpAEm5EREREREREQaYEJOREREREREpAEm5EREREREREQaYEJOREREREREpAEm5EREREREREQa0GsdABERkRYS0nKQk1+kdRh1jpOdHn7uTlqHQUREdFdgQk5ERHedhLQc9H4rttbr1emzYOP2KwozukGKXGq9/oraOa0Xk3IiIqJawISciIjuOsqZ8SXDgtHS07nW6k3IOoWXf1uAxeHD4efSutbqragzKdmYsvEQfzlARERUS5iQExHRXaulpzMCm7jWWn1W9jeTf39PZ7RrWHv1EhERUd3Em7oRERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEGmJATEdWQ3NxcHDx4ELm5uVqHQkR3MI41RER3DibkREQ15OTJk+jUqRNOnjypdShEdAfjWENEdOdgQk5ERERERESkAT6HnKgW5OXlISoqCnFxcQgICMCiRYvg4OBQ5fIKCgqwYsUKxMfHw8/PD0FBQUhLS4O3tzdCQkJgbW2tbmswGLBnzx4kJyer6wFgz549SEpKQmpqKjw8PNCkSZMK7Wu8viyXL19GcHAwMjIy4ObmhkOHDqFRo0YV2tdSf1lbW1eozdeuXUNoaCguXbqExo0bY9euXWjQoIFZ38XFxUGn06Fbt25o1qwZQkJCkJmZabavs7OzWq+/vz+ef/555OXlITw8HOfPn0fz5s2xdetWuLrymdJEVLsKCgqwZMkS7N27F5s2bYKIwNraGlOnTkVeXp46ZgEoddyztrbG0aNHcc8990BEAABvvPEGunXrZjJfJCcno2HDhjh69Cji4+ORnJyMRo0aoXnz5ti3bx/OnTsHf39/rFu3DgUFBepY6uLigpdffhktWrQAcHNuUOYde3t7TJw4Eenp6bC1tcVjjz2G9u3bIygoCElJSfjoo4+QmZmJli1bYt26dXBwcFBjcXV1xapVq5CQkKDW6+zsbNZHluaxgoICdY5p0aIFHnnkEWRkZFR6nivtPSk5Z9ja2lYoLuO+trTM3d0dR48eVdtcWtlasdQmg8FQof6oS4zboXzmExMTb5v4y1OdYzu6RYToFhg9erQMHDhQ0xgyMzMFgGRmZmoax8CBAwWA2auq/RMVFSV6vd5imQDE19dXNm3aJCIimzZtEl9fX5P1Hh4e4unpWaV9jdeXxdHR0WL5jo6OVe6vsl5KXF5eXhbXe3l5ldt3VlZWla7X+OXv7y8HDhwQAHLgwIEqvbdUe45ezBCfGTFy9GJGrdZ7PO24BK4NlONpx2u13orSql+ocpSxxtrautyxSafTiU6nK3XsLGtfT09P8fDwqNbYWJMvW1vbMtd36dLFpJ8szWMODg4Vmk+qwtIco9frJSoqqty4LPV1WfN1aWVrxVKbXFxczObWuhSzJZbacTvFX57qHNtRxVQl/2BCfpc5f/68jB07Vry9vcXGxkaaN28ukyZNkrS0tBqthwn5TUpyaWtrKzNnzpQzZ87IzJkz1YOKyvZRVFSUmmA+99xzotPp5J577pH69esLABkxYoRERkaKTqeTqKgo0el0EhkZKfv375fr169LdHS0ySAcFhYmq1evlrCwMNHpdNK5c+dS992/f79adlkDt3Ey7ufnJ19++aX4+fmpy8pKyi31V7du3UwmjdLabNyu++67T3bs2CH33XefSb0AxNXVVQBInz59ZObMmWYHO61atZIdO3ZIo0aNTA4qkpOTTQ6WfH19Zf/+/dK/f391WdOmTQVgQn47YEJuGRPy28OoUaOqlND27dtXZs6cWWqS3bJlS4tfToaEhAgAsbe3V5c5Ozur/1b2Kblvt27dpFmzZmblWfoiwc7OzmyZn5+fWnfJ7XQ6nTrmhoaGql86KEn5pk2bzOYx47KUucXf319sbGzUdlZknrPEeH5evXq1JCcny+rVq9UvipUkzlJcxnNzdHS02TIl7vr168s999wjOp1OnnvuObOytWKpTSNGjFDjf+6550rtj7rEuB1K/A0aNJAOHTqo7ajL8ZfH0vtU0WM7qjgm5FSm+Ph48fT0lB49ekhsbKycO3dOvv32W2nfvr0EBATI1atXa6wuJuQiubm5anKZn59vsi4/P19NynNzcytUXn5+vuj1evHy8pIbN26Ir6+vREZGisFgkMLCQvHy8hK9Xi95eXkSEREher1eIiIixGAwiIhIUVGR+Pr6Snh4uNjb24ujo6MUFBSIiIjBYJDIyEjx8/OT8PBws30VxtsVFRWZxZicnKxOwOnp6Sbr0tPT1XXJyckV6i+lzR4eHuoB04ABA8zanJSUpJadkWGaSFy/fl1d5+HhIc2bN1f7TUTkypUrJgerfn5+kpubK3q9Xho2bKiuO3v2rPpvd3d30ev1apw5OTkmB4xMyOs+JuSWMSGv+/Lz880S2oSEBHV+KJls16tXT6ysrESn00leXp6IiBQWFkq9evVMEmTjMd94vFOSQQ8PD7GyshIvLy+TLyI9PT1Fr9dLgwYNzBLqa9euia+vr/Tt21dd1rNnT5NtrKysZMCAAaLX6+XBBx9Ulzds2FD0er1kZ2eLg4OD2Nvbm5zpz8vLM5mTsrOz1fUZGRkmc6SI6RwTFhZmMs8Zz8nZ2dllznOlvSdK/xcWFpqsM56rcnNzzeJS5uaIiAiJiIgQPz8/yc/PV5cNGDBA7efCwkKTNt+4cUMtu+RxRm1R4jduk3F/hIeHm/SlcX9oFbMlxu3Iy8szeT/rWp9XhaX3SVHesR1VTlXyD15DfheZOHEibG1tsX37dvX65ebNm6Njx47w9/fHv/71L7z//vvQ6XTYsmULBg0apO7r5uaGJUuWYMyYMQCACxcu4KWXXsL27dthZWWFkJAQLF26FL6+viZ1zp07F8uXL0d+fj6GDx+Od999V732pri4GG+++SY++OADXL58Ga1atcKrr76KoUOHqvsfP34cM2bMwO7duyEiCA4Oxtq1a+Hv72/Wvvz8fOTn56t/Z2Vl1VDPVU1UVBQAYOrUqWbXG9na2mLKlClYuHAhoqKisHz58nLLW7FiBYqKijB//nzs378fiYmJ+Pzzz2FlZQUrKyvMmzcPEyZMwMqVK9G/f3/ExMQgLCwMVlY37924Z88eJCYmIioqClu3bgUA7N27F7169YKVlRVmzZqFBx54AJGRkSgqKjLZV2G83Z49e9CrVy+T9cHBwQAAPz8/uLm5maxzc3ODj48Pzp07h+DgYFy+fLnc/lLavGDBAuzYsQMbNmyAg4ODWZvvvfdetZw///zTJC5nZ2c0a9YMFy5cQHFxMc6fP4+NGzeqbXvooYfUbdu0aYPt27cjKioKRUVFeOONN7B69Wr89ttvaNeuHQCgf//+GDx4MCZMmIAVK1ZgypQpcHR0RN++fbF9+3YAwJmU67BNyiz3PSXtnEnJBgDcKDRoHEndovSH0j9U96xbvQIGw9+fWzs7O3z99dfq/FBcXIwJEyZAp9NBRJCdna1eG75y5UpMmTIFer0e169fV8swGAwmY/65c+fUdXv27AEAtG/fHrGxsZg/fz7WrVsHAOjTpw+GDh2KCRMmoLCwEADg6emJlJQUAEBkZKQ67yjjo1Kes7MzsrOzUVxcjICAAHz77bdIS0tT6y0oKEBRURFmzJiBvLw8AIC7uzvS0tLQtGlT2NvbA4A6J/3+++8YPnw41q9fj/DwcJM5EjCdY5o2bYrvvvtObbPxnDxjxowy5zlLjOdnvd700Fqv16tzVVRUlFlcytz8+eefQ0TwwAMPYMWKFeqyDRs2AABGjRqllq3Et3//frVsZT6qbcbxK20y7o/27dub9KVxf2gVsyXG7Vi5cqXZ+1mX+rwqLL1PivKO7ejWY0J+l7h27Rq2bduG119/3exmYo0aNcKIESOwceNGrFixotyyCgsL0a9fP9x///3Ys2cP9Ho95s+fj/79++PIkSNqMrVjxw7Y29sjNjYWiYmJGDt2LBo2bIjXX38dABAdHY3PPvsMK1euREBAAHbv3o0nn3wSHh4eCA0NRVJSEnr27IlevXrhp59+gouLC/bu3YuioiKLcUVHR2Pu3LnV7KmaExcXBwB4+umnLa4fN24cFi5cqG5Xnvj4eABAREQEdu7cCQAIDAxU10dERKjbdezYEQBM3uvk5ORSlxmXdePGDbPtjCnbGe+ryMjIAAAsXLjQ4r4LFizAiBEj1O2MWeov4zZnZWVhw4YNSE9PV9crbTYuz1JcwcHBuHDhgnpQZ9xvly5dUv+ttF2JJSIiAs2aNUP//v3VL3tmz56N5s2bm8QHAK+88op6wDl5wyHYxTKhuR1cTM9DZ1+to6g7Lqbf/H9kysZD2gZCpbr2wz6Tv1999VWTsbK4uBgAUL9+fVy7dk1NxgHTMUuhfGFZ2tygUMqJiIjAO++8A+DmF5rKOKyMkU2bNlUT8vPnzwMwnU+Uclq0aIEjR44AgDo2X716Vd1OKc94jlQSCePyjOekqVOnYv369Wq9xmO98Ryza9cus3KM5+Sy5jlLjPvfEmW5EoNxXEodgYGBat8o5QUGBqp9o9wUr2Sbjed+LRjHrzDuDycnJ5PtlOXG29UFxu1Yv349ANP3sy71eVVYep+MVfYzTzWLCfldIi4uDiKCtm3bWlzftm1bpKenIzU1tdyyNm7ciOLiYnz44YfQ6XQAgDVr1sDNzQ2xsbHo27cvgJtngT/++GM4Ojqiffv2mDdvHqKiovDvf/8bhYWFWLBgAX788Ufcf//9AG5ONj///DNWrVqF0NBQvPfee3B1dcWGDRtgY2MDAGjVqlWpcc2aNQtTp05V/87KykKzZs0q1kG3QEBAALZv344PP/wQ0dHRZus/+ugjdbuKUH4VEBMTg5YtWwIAjh07hvvuu09drmynTODKfwHA29u71GVKWQDUsw7G2xlTtjPeV+Hm5oYrV65g+vTpJr90ULz88svqdiVZ6i/jNv/+++8Abh5kKpQ2K/WWFtehQ4cA3Dz4ys3NNem3xo0b49q1ayZtV2KJiYnB6tWrAdw8C3Xjxg3MnTsXgwcPNokPAObPn6/+e+kTwWgXFGwWB9UdZ1KyMWXjITStX/WnHdyJlP5YMiwYLT3N71hN2ltnfwQLD8aof//73//GG2+8AeDmmKgk5MqXl8qZcgAWf1124cIFAKXPDQplvo+JiYG7uzuAm1+8K2OynZ0dCgoKcPHiRXWf5s2bm3wZahzP2bNn1WVKYtywYUMkJSWZlKeMxwDUthmXZzwnvf322yb1Go/1xnNM06ZNzcoxnpPLmucsMZ6rLH0Jr8xVSgzGcSl1HDt2zOx9OnbsmNo3xv1lHJ/x3K8F4/iVNhn3R/v27U22U5Ybb1cXGLfD0vtZl/q8Kiy9T8Yq+5mnGlbDP5unOuqXX34RALJ582aL699++231ul8AsmXLFpP1rq6usmbNGhERmTZtmlhbW4uTk5PJS6fTyYoVK0Tk5jXkvXv3Ninj0KFDAkASExPl2LFjAsCsDBsbG+natauIiISFhcmoUaOq3GZeQ85ryEV4DTlZxmvILeM15HUfryHnNeR16XpmXkN+e+A15LWHN3WjUqWlpYlOp5PXX3/d4vrx48eLh4eHiIjodDqzxN3R0VFNyJ999lnp2rWrxMXFmb2UZKi8hFz5giA2NtasjPPnz4uIyKOPPnpbJ+QipncNnz59upw6dUqmT59eI3dZnzBhguh0OunQoYN6x/Hhw4dbvMv6vn37JCsrSxYsWGByIBQWFiarVq0q8y7ryr779u2r9F3WfXx8ZP369eLj46Muq+hd1pX+6tKli0l5pbXZuF1du3aV77//Xrp27WpSL2B6l/Xp06eb3WW9ZcuW8v3335vdZT0pKcnkQNfHx0d2795tcqDJu6zfPpiQW8aE/PZQ1busK+NeaXdZ9/Pzq9G7rHft2lUdF41fFb3Luq+vb5l3WW/SpIma5Jd1l3VlHjMuS5lbbsVd1letWiVJSUmyatWqMu+ybmluXrBggdky47usd+jQQXQ6nUyYMKHO3PHbUpuGDx+uxv/ss8+W2h91iXE7lPiVPlfaUZfjL4+l96mix3ZUcUzIqUx9+/aVJk2amJ2RTU5OFkdHR3Vw8fT0lPfee09df/r0aQGgJuQffPCB1K9fv8wP2ujRo6VBgwYmda1cuVKcnZ3FYDBIVlaW2NnZyaefflpqGXPmzBE/Pz/1LG5l1YWEXKT2n0Pu5+dX5rPEPT09S32uaXn7Gq8vS20/h1yJi88hp4piQm4ZE/LbQ009h9z4kZSWXnfjc8grOs9ZUtPPIS9rvi6tbK3wOeS3h+oc21HFVCX/0IkY3e2D7mhxcXF44IEH0LZtW8yfPx9+fn44fvw4oqKioNfrsWfPHjg7O+Mf//gHDh8+jPXr18NgMGDGjBnYs2cPPvjgA4wZMwa5ubkIDg5GkyZNMG/ePDRt2hTnzp3D5s2bMX36dDRt2hRjxozBpk2bEBkZiVdeeQWJiYl46qmnMHbsWPX64FdeeQUrV67E4sWL0aNHD2RmZmLv3r1wcXHB6NGjcfXqVbRu3RqhoaGYNWsWXF1d8csvv6Br165o3bp1ue3NysqCq6srMjMz4eLicqu7t0x5eXmIiopCXFwcAgICsGjRolJvmlYRBQUFWLFiBeLj4+Hn54egoCCkpaXB29sbISEhsLa2Vrc1GAzYs2cPkpOT1fXAzTtuJiUlITU1FR4eHmjSpEmF9jVeX5bLly8jODgYGRkZcHNzw6FDh9CoUaMK7Wupv6ytrSvU5mvXriE0NBSXLl1C48aNsWvXLjRo0MCs7+Li4qDT6dCtWzc0a9YMISEhyMzMNNvX2dlZrdff3x/PP/888vLyEB4ejvPnz6N58+bYunUrXF1dcfDgQXTq1AkHDhwwufM71T3HkjIRsexnxLzYA4FNXGut3hNXT2BYzDBsjNiIdg3b1Vq9FaVVv1DlKGPN/v378csvv2Dv3r3YtGkTRATW1taYOnUq8vLy1DELQKnjnrW1NY4ePYp77rlHvYb5jTfeQLdu3Uzmi+TkZDRs2BBHjx5FfHw8kpOT0ahRIzRv3hz79u3DuXPn4O/vj3Xr1qGgoEAdS11cXPDyyy+rNyW7fPmyOu/Y29tj4sSJSE9Ph62tLR577DG0b98eQUFBSEpKwkcffYTMzEy0bNkS69atg4ODgxqLq6srVq1ahYSEBLVeZ2fz+x5YmscKCgrUOaZFixZ45JFHkJGRUel5zhLj+Vnp/5JPWiktLuO+trTM3d0dR48eVdtcWtlasdQmg8FQof6oS4zboXzmExMTb5v4y1OdYzsqX5Xyj1v05QDVUQkJCTJ69Gjx8vJSvzF/9NFHJScnR90mKSlJ+vbtK05OThIQECDffvutyTXkIjfPqo8aNUrc3d3Fzs5OWrRoIePHj1e/DVKeQ/7aa69Jw4YNxdnZWcaPHy83btxQyyguLpYlS5ZI69atxcbGRjw8PKRfv36ya9cudZvDhw9L3759xdHRUerVqychISESHx9fobbWlTPkdPfgGfLbB8+QW8Yz5LcHjjVERHUTn0NO5fL19cXatWvVv2fPno23334bR44cMbnr9LZt20z2K/mYqkaNGuGTTz4ptR7jOkp7FJlOp8PkyZMxefLkUsvp0KGDWSxERERERER3Aibkd7m5c+fC19dX/Sm48oxPIiIiIiIiurWYkBPGjh2rdQhEd4Q2bdrgwIEDaNOmjdahENEdjGMNEdGdgwk5EVENcXR05M3ciOiW41hDRHTn4O+TiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAa8iJiOiuk1doAAAcS8qs1XoTsrIBAPEp2Si+Ubt1V8SZlGytQyAiIrqrMCEnIqK7Tvz/J54zNx+t1Xp1+izYuD2ESevjIUWptVp3ZTjZ8fCAiIioNnDGJSKiu07f9o0AAP6eznCwsa7l2gfUcn2V42Snh5+7k9ZhEBER3RWYkBMR0V2ngZMtnujaXOswiIiI6C7Hm7oRERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEG9FoHQEREpIWEtBzk5BdpHcZtwclODz93J63DICIiuuMwISciortOQloOer8VW+v16vRZsHH7FYUZ3SBFLrVef3XsnNaLSTkREVENY0JORER3HeXM+JJhwWjp6Vxr9SZkncLLvy3A4vDh8HNpXWv1VseZlGxM2XiIvyYgIiK6BZiQExHRXaulpzMCm7jWWn1W9jeTf39PZ7RrWHv1EhERUd3Em7oRERERERERaYAJOREREREREZEGmJATERERERERaYAJOREREREREZEGmJATEVVCbm4uDh48iNzcXK1DISKqMI5dRER1ExNyIqJKOHnyJDp16oSTJ09qHQoRUYVx7CIiqpuYkBMRERERERFp4LZ8Drmvry+mTJmCKVOmaB1Kpel0OmzZsgWDBg3SNI4xY8YgIyMDX3/9dbXLio2NRe/evZGeng43N7dql1eWutJ/dGsZDAbs2bMHycnJ8Pb2RkhICKytrSu0b0FBAVasWIH4+Hj4+/vj+eefh7W1dYXKs7Svra1tTTePiEgzf/zxB06dOmUyFpY15lZnPC5PRcu2tB2AMvetaJs8PT0BACkpKTXevsqq7bhu5XtbG6ryubiTVef9rOufhboeX7WJhkaPHi0ABIDY2NiIv7+/zJ07VwoLC8vcLyUlRXJycmopSsuMYzd+9evXr8z9AMiWLVtqJ8gyjB49WgYOHFjq+p07dwoASU9PL7esymxbXZXpv8zMTAEgmZmZtzYoqlGbNm0SX19fk/+vfH19ZdOmTeXuGxUVJXq93mRfKysrcXV1Lbc8S/vq9XqJiooy2e7AgQMCQA4cOFCj7abadfRihvjMiJGjFzNqtd7jacclcG2gHE87Xqv1VodWfUU1a9GiRWbHLL6+vhIVFVXqmFud8bg8FS3b0nYeHh7i6elZ6r5llW1p3a1oX030x62M61a+t7WhKp+LO1l13s+6/lmo6/GVVJX8Q/OfrPfv3x/JycmIi4vDSy+9hDlz5mDRokUWty0oKAAAeHh4wNHRsTbDtEiJ3fj1+eefax2WicLCQq1DIKqwzZs3Y+jQoQgKCsL+/ftx/fp17N+/H0FBQRg6dCg2b95c6r7Tp0/HokWL0LBhQ6xevRrJycl47rnnUFxcjMzMTIwYMaLU8iztu3r1ajRs2BCLFi3C9OnTa6sLiIhq3ObNm9VxbO3atepY6O7ujkWLFsHd3d3imDtkyJAqjccViaciY72l7aKjo5GamoqUlBRER0eb7Tt9+vQyy1baFB0dDQDo0aMHevToAZ1Oh+jo6BppX3X6ozbiqs5cWxdU5XNR19tUHdV5P+v6Z6Gux1djbuEXBOWydJa2T58+ct9995msnz9/vnh7e4uvr6+IiPj4+Mg777yj7gNAVq9eLYMGDRIHBwdp2bKlfPPNNyblHjt2TMLDw6VevXri7OwsPXr0kDNnzqjrV69eLW3atBE7Oztp3bq1vPfee5WOvaTTp09LSEiI2NnZSdu2bWX79u0mZ3iHDBkiEydOVLefPHmyAJC//vpLRETy8/PF0dFRfvjhBxER+e6776R79+7i6uoqDRo0kPDwcJM2JCQkCADZsGGD9OzZU+zs7GTNmjVSVFQk//znP9X9oqKiZNSoUZU6Q56YmCgRERHi5uYmjo6O0q5dO9m6davFbdPS0uSJJ56Qxo0bi4ODgwQGBsp//vMfk/JDQ0PlxRdflKioKKlfv754eXnJ7NmzK9V/5eEZ8ttLUVGR+Pr6SmRkpBgMBpN1BoNBIiMjxc/PT4qKisz2zc/PF71eL15eXuovbJTyIiIixNPTU/R6veTn55uVl5uba7avorCwULy8vEz25RnyOwPPkFccz5Df3pSxsGfPniZjl7Lcy8tLfH19TcbWgoICcXBwEEdHRykoKDApr7zxuKLxlDfW5+fnm21nPK5HRESYxGAwGCQiIkL0er1ERESYlW3cpry8PJOyjestKCioVvuq0x8FBQW3PK7qzLV1gaX4y/tc1PU2VUd13s+6/lmo6/GVpir5R527htzBwQFXr15V/96xYwdcXFzwww8/lLnf3LlzsXDhQixatAjLli3DiBEjcO7cOTRo0ABJSUno2bMnevXqhZ9++gkuLi7Yu3cvioqKAADr16/Ha6+9huXLl6Njx474888/MX78eDg5OWH06NFVakdxcTEeffRReHl54ddff0VmZqbZNe+hoaFYtWqV+veuXbvg7u6O2NhYtGnTBr///jsKCwvxwAMPAABycnIwdepUdOjQAdnZ2XjttdcwePBgHDp0CFZWf//YYebMmVi8eDE6duwIe3t7LF68GGvXrsXHH3+Mtm3bYvHixdiyZQsefPDBCrdn4sSJKCgowO7du+Hk5IQTJ07A2dnZ4rY3btxAp06dMGPGDLi4uGDr1q0YOXIk/P390bVrV3W7Tz75BFOnTsWvv/6K/fv3Y8yYMejevTv69OlTof4rKT8/H/n5+erfWVlZFW4faW/Pnj1ITEzE559/bvJ5BgArKyvMmjULDzzwAPbs2YNevXqZrF+xYgWKioowf/586PV6s/KOHDmCCRMmYMWKFZgyZYpJeVFRUWb7KvR6PebNm2ey741CAwDgTMp12CZl3roOoVvqTEo2AKjvJ5Xu7898tsaRUFX8vu/mWDhuUhR2796tvp/KGPnBBx/gmWeeMRlb9+7di7y8PPXfxmNueeNxeSo61q9YscJsO+N9RcQkBisrK/Tv3x8xMTEICwszK9u4TStXrjQrW6l379691WpfZRm3ae/evbc8rurMtXWBpfjL+1zU9TZVR3Xez7r+Wajr8dWkOpOQiwh27NiBbdu24cUXX1SXOzk54cMPPyz3xkpjxozBP/7xDwDAggUL8O677+K3335D//798d5778HV1RUbNmyAjY0NAKBVq1bqvrNnz8bixYvx6KOPAgD8/Pxw4sQJrFq1qsyEPCYmxiwpffnll/Hyyy/jxx9/xMmTJ7Ft2zY0btxYjSssLEzdtlevXpg8eTJSU1Oh1+tx4sQJvPrqq4iNjcWzzz6L2NhYdOnSRf15/pAhQ0zq+vjjj+Hh4YETJ04gMDBQXT5lyhS1LQCwZMkSzJo1S122cuVKbNu2rcz+LOn8+fPqz7wAoEWLFqVu26RJE0ybNk39+8UXX8S2bdvwxRdfmCTkHTp0wOzZswEAAQEBWL58OXbs2IE+ffpUqP9Kio6Oxty5cyvVLqo7kpOTAcDks2xMWa5sZyw+Ph4AEBERYbG85s2bm2xnXF5cXJzZvsaU5cq+F9NvPsN38oZDsItlgnK7u5ieh86+WkdRt11Mv5nETNl4SNtAqEpyTuwGACz74+Z4pYxhyhipjHHGY2tp/1aUNR6Xp6JjvTLmGm9nvK+ImMXg4OBg8l9L9ZZWtnGbLPXJrWLcpv/973+3PK7qzLV1gaX4y/tc1PU2VUd13s+6/lmo6/HVJM0TciWpLSwsRHFxMYYPH445c+ao64OCgip0l+MOHTqo/3ZycoKLiwtSUlIAAIcOHUJISIiajBvLyclBfHw8xo0bh/Hjx6vLi4qK4OrqWmadvXv3xvvvv2+yrEGDBgCAv/76C82aNVOTSQC4//77TbYNDAxEgwYNsGvXLtja2qJjx46IiIjAe++9B+DmGXPjb3zi4uLw2muv4ddff0VaWhqKi4sB3EyWjT+snTt3Vv+dmZmJ5ORkdOvWTV2m1+vRuXNnddCqiEmTJuG5557D9u3b8fDDD2PIkCEmfW7MYDBgwYIF+OKLL5CUlISCggLk5+ebXfdfcn9vb2/1PatI/5U0a9YsTJ06Vf07KysLzZo1q3AbSVve3t4AgGPHjuG+++4zW3/s2DGT7Yz5+/sDuDmePP3002blHTlyxGQ74/ICAgKwfft2k32NxcTEmOzbtP7Nz/HSJ4LRLii4kq2kuuJMSjambDyEpvXND9zJlNJHS4YFo6Wn5V9GUd31+z7BU/9bhBc7O+PV//w9hiljpDLGGY+tpf1bUdZ4XJ6KjvXKmGu8nfG+yjGMcQzKGXDlv5bqLa1s4zZVp32VZdwmS31T03FVZ66tCyzFX97noq63qTqq837W9c9CXY+vRt2Cn85X2OjRo+Xhhx+WuLg4OXfunNn1m6Vdp23pGvKS1xW7urrKmjVrRETk0UcflVGjRlmM4fLlywJAPvvsM4mLizN5nT17tszYy7oGe8mSJeLn52eyLCMjwyzWwYMHy8SJE2Xq1KkyY8YMMRgMUr9+fTl69Kg4OTnJtm3b1G1bt24tffv2lR9//FFOnDghx44dMylPuYb8zz//NKtz165dJrEMGjSo0ndZP3/+vLz//vsyePBgsbGxkXfffdfittHR0dKwYUNZt26dHDp0SOLi4iQ8PNykvtDQUJk8ebJJnQMHDpTRo0dXqv/KwmvIby+8hpxqE68hrzheQ3574zXk5m3iNeS333W5Cl5DborXkNe997Uq+YfmCXlZSWFNJeRz5sxRBzNLGjduLPPmzavR2Ldt2yZ6vV4uXbqkLvv+++/NYl2yZIm0b99e7r33Xvnuu+9E5GZiOmrUKNHr9ZKdnS0iN2+UBkB2796t7rtnz55yE3IREW9vb1m4cKH6d2FhoTRr1qxajz2bOXOmBAUFWdw2IiJCnnrqKXVbg8EgAQEBlUrIK9p/ZWFCfvvZtGmT6HQ6iYyMlH379klWVpbs27dPIiMjRafTlfmIi6ioKAEgXl5esmrVKklKSpIJEyaoj8gYPnx4qeVZ2nfVqlXi5eUlAEwefcaE/M7AhLzimJDf/pSxFYCsWbNGHQs7d+4sAKRz584Wx1wAVRqPKxpPeWVb2m7BggXquL5gwQKzfaOiososW2mTUk737t2lR48eotPpZMGCBTXSvur0R23EVZ25ti6oyueirrepOqrzftb1z0Jdj88SJuRGjBPytLQ0adiwoTz66KPy+++/y+nTp+XTTz+VkydPisjNO6w7ODjI0qVL5dSpU3LkyBH5+OOPZfHixWXG1r9/f0lOTjZ5paamisjNJLRdu3bSp08fOXTokOzevVs6depkFuuhQ4dEp9OJnZ2dXL9+XURE3nnnHbG2tlbvNq+U17BhQ3nyySclLi5OduzYIV26dKlQQv7GG29IgwYNZMuWLfLXX3/J+PHjpV69epVKyCdPnizff/+9nD17Vg4cOCDdunWTxx9/3OK2//znP6VZs2ayd+9eOXHihDz99NPi4uJSqYS8ov1XFibktydLz5v08/Or0eeQWyqPzyG/uzAhrzgm5HcGS88h9/Pzs/gccmWMrM54XJ6Klm1pO09PT7PnTRvvW1bZ5T3vu6baVxP9cSvjupXvbW2oyufiTlad97Oufxbqenwl3RF3Wb8VGjZsiJ9++glRUVEIDQ2FtbU1goOD0b17dwDA008/DUdHRyxatAhRUVFwcnJCUFBQuXf1/v77782uW2jdujVOnjwJKysrbNmyBePGjUPXrl3h6+uLd999F/379zfZPigoCG5ubmjVqpV6g7hevXrBYDCY3dV0w4YNmDRpEgIDA9G6dWu8++67Fbqr4EsvvYTk5GSMHj0aVlZWeOqppzB48GBkZlb8DtEGgwETJ07ExYsX4eLigv79++Odd96xuO0rr7yCs2fPol+/fnB0dMQzzzyDQYMGVaq+ivYf3XkeffRRDBw4EHv27EFycjK8vb0REhICa2vrcvdduHAh5s+fjxUrViA+Ph7+/v54/vnnYW1tXW55pe1bkXtYEBHVdcqTVVatWoV69eqZjIXR0dGljpFVHY/LU9GxvrTtAJS6b3llG6/z9PQEAKSkpNRo+yqrZMy3Oq7qzLV1QVU+F3ey6ryfdf2zUNfjqwk6kUrc2YvoNpKVlQVXV1dkZmbCxcVF63DoDnHw4EF06tQJBw4cwL333qt1OFRFx5IyEbHsZ8S82AOBTcq+gWdNOnH1BIbFDMPGiI1o17BdrdVbHVr1FdUsjl1ERLdeVfIPq/I3ISIiIiIiIqKaxoSciIiIiIiISANMyImIKqFNmzY4cOAA2rRpo3UoREQVxrGLiKhuuitu6kZEVFMcHR15/SUR3XY4dhER1U08Q05ERERERESkASbkRERERERERBpgQk5ERERERESkAV5DTkREd528QgOAm8/Yrk0JWdkAgPiUbBTfqN26q+pMSrbWIRAREd2xmJATEdFdJ/7/k8yZm4/War06fRZs3B7CpPXxkKLUWq27upzseMhARERU0zi7EhHRXadv+0YAAH9PZzjYWNdy7QNqub7qc7LTw8/dSeswiIiI7jhMyImI6K7TwMkWT3RtrnUYREREdJfjTd2IiIiIiIiINMCEnIiIiIiIiEgDTMiJiIiIiIiINMCEnIiIiIiIiEgDTMiJiIiIiIiINMCEnIiIiIiIiEgDTMiJiIiIiIiINMCEnIiIiIiIiEgDTMiJiIiIiIiINMCEnIiIiIiIiEgDTMiJiIiIiIiINMCEnIiIiIiIiEgDTMiJiIiIiIiINMCEnIiIiIiIiEgDTMiJiIiIiIiINMCEnIiIiIiIiEgDTMiJiIiIiIiINMCEnIiIiIiIiEgDTMiJiIiIiIiINMCEnIiIiIiIiEgDTMiJiIiIiIiINMCEnIiIiIiIiEgDTMiJiIiIiIiINMCEnIiIiIiIiEgDTMiJiIiIiIiINMCEnIiIiIiIiEgDeq0DICIiqi0JaTnIyS/SOgzNOdnp4efupHUYREREdz0m5EREdFdISMtB77diNY1Bp8+CjduvKMzoBily0TSWndN6MSknIiLSGBNyIiK6KyhnxpcMC0ZLT2dNYkjIOoWXf1uAxeHD4efSWpMYzqRkY8rGQ/ylABERUR3AhJyIiO4qLT2dEdjEVZO6rexvfhHg7+mMdg21iYGIiIjqDt7UjYiIiIiIiEgDTMiJiIiIiIiINMCEnIiIiIiIiEgDTMiJiIiIiIiINMCEnIjoFsvNzcXBgweRm5urdShEVEdwXCAiIoAJORHRLXfy5El06tQJJ0+e1DoUIqojOC4QERHAhJyIiIiIiIhIE3wOOdUJsbGx6N27N9LT0+Hm5qZ1ODUuOzsbI0eORHx8PPz9/bFu3To4ODhgz549SE5Ohre3N0JCQmBtbV3jdefl5SEqKgpxcXEICAjAokWL4ODgAAAwGAxlxmBpX1tbW+zZswcXLlzAr7/+ChFBQEAAnn/+edja2pbZZmdn51LjNI7FyckJb775Ji5cuIBmzZphxowZuH79OlJTU+Hh4YEmTZogJCQEBoMBK1asQHx8PJo3bw4A+OOPP/DFF18AAHQ6HQ4fPoygoCC1noKCAqxYsQKnTp3C5cuX4e3tDX9/fwQFBSEhIQGzZ89GdnY23N3dsWjRIhQUFKj1urq64oMPPkBCQgJcXV0xbtw4NGnSBEePHkVsbCxiYmLUenbs2IEHH3ywZt5EIrpjGQwGxMbGYvv27YiOjlaXh4eH48aNG7hy5Qq8vLzQqlUrDBw4EJcvX8bXX3+NnJwc+Pj4IDk5GX/99RfOnj0LALCyssLUqVORlZWF48ePw8HBAU2bNsVPP/2Eq1evwtbWFgMHDkSrVq2wf/9+JCYmon79+ti9ezeAv8fNli1bIioqCqdPn4aTkxMGDRoEb29vHD16FImJifD398fzzz+PzMxMdO3aFSkpKahXrx7mzp0LHx8f/Pe//0VcXBzy8vIQFBSE1q1bm80T58+fR/v27ZGbmwtra2s8/vjj6Ny5s9l2luaqvLy8Ks+rly9fRnBwMDIyMuDm5oalS5eioKBAndN8fX0BAImJidDpdOjWrRsaN24MALh06ZK6nTJ3XL58WV3m5+cHADh37pzaR0pbyppTS8aszFVK+4zLsdQfxvNhye2N90lKSjKbS6ty7FGVGMraF0Clj4nK6iNL66ytrat13FXeMVNF4qqpOirbHzWlKu9dddpU3r610eZaIXTXOX/+vIwdO1a8vb3FxsZGmjdvLpMmTZK0tLQKl5GQkCAA5M8//6yRmPLz8yU5OVmKi4trpDwRkczMTAEgmZmZNVZmVXTp0kUAmL1sbW1N/vb19ZVNmzbVaN0DBw60WPfAgQNl06ZN4uvrW2oMpe3r4OBgcbler5eoqKgy29ylSxeLcVqKpbyXq6urWFlZVXh7EZGoqCjR6/WVqqe6LxGRAwcOCAA5cOBAjb6/VDlHL2aIz4wYOXoxQ7MYjqcdl8C1gXI87bhmMdSFfqC/x4XGjRvX6pik5ct4nihrLDbeztL8UHL+LG25pXnV0dFRkzZXdE719fWVgQMHmvWPUo6l/nBxcTGbD8vrw7L6qDxViaGsfT09PcXDw6NScVmaz5X6LK2zsrISV1fXKre9vGOmisRVU3VUtj9qiqX4PDw8xNPTs9SYq9Om8vatjTZXRVXyDybkd5n4+Hjx9PSUHj16SGxsrJw7d06+/fZbad++vQQEBMjVq1crVE5NJuQFBQXVLsOSupCQK4mpTqeTkSNHyuHDhyU0NFQdONq2bSvXr1+X/fv3S2RkpOh0uhpLypXJ39bWVmbOnClnzpyRmTNnmhywREZGyv79+81iUOI23nfw4MFmE+jMmTOlT58+AkCd6Ly8vMzaPHLkSNHpdAKYJ+WbNm0SnU4nkZGR0qRJE5PJveTBioeHh4SFhZnEERwcbPEgw97e3uJy5WDM3d3d5L0o7eBIaUvJZSUPHsp6MSGvG+pCIsqEnBSLFi2q8BhS8mVjY1PlfSv76t27t7Rr185sbC6Z/Hbt2tXi+NmxY0c1XmWfkmNqvXr1LCbKAwcOVOcHZa5q27atuj40NLRS86pxHUoSYW1tXeZY37JlS7NlXbt2NVvWqFEjs3mkX79+6pyotN/SnBoSEqLG7O/vL8DNOXX16tWSnJwsq1evNinHuD9GjBihLn/uuefMtlf6sHPnzgJAwsLCZPXq1RIWFqYur8yxh/GcXdEYjL8YKLlvdHS0um90dHSFjomioqIEuHm8UVofGa977rnn1OUjRoyo9HGXpbgt7V9eXGUlihWtw5Lq1FtRVXnvoqKiqtym8vpDOca9lW2uKibkVK7+/ftL06ZNJTc312R5cnKyODo6yrPPPisiIj4+PvL666/L2LFjxdnZWZo1ayarVq1Sty85EYWGhoqIyG+//SYPP/ywNGzYUFxcXKRnz55mSQgAWbFihURGRoqjo6PMnj1bdu7cKQAkPT1d3e6rr76Sdu3aia2trfj4+Mhbb71VqbZqnZBfv35dneDz8vJERKSoqEh8fX1lwIAB6sR//fp1ERExGAwSGRkpfn5+UlRUVK26c3Nz1ck/Pz/f4joAkp2dbbLOYDDIgAED1AM+ZV8l7v79+6v7ZmVlmcTt4+NjkqQqbVbk5eWZtVkpNzIyUq5du2ZSto+Pj3h6eoperzdJwi9fviw6nU6srKzU5cbferu5uYler5ecnByTyRmAODk5ibW1tXh5ecmNGzfE19dXHn74YXV9w4YN1QMWBwcHsbOzM9nfxsZGHBwc1D4yfnXu3Fn8/Pzkxo0bZvW+9957AjAh11pdSESZkJPIzbGv5JnxX375xWKiC0A6depkMVlWXsqZSTc3tzK3UxJjS4lnZmamxeW//fab6PV68fDwUGN76KGHTOrW6XTqGG6c4Pbp00f8/PwkNzdX3bdBgwYm5Xt5eUlhYaGIiKSmppqM5QAkPDxcDAaDiJjOqwMGDBA/Pz/Jz88XX19fNcEsbV69ePGiWnZaWpr4+vpKeHi46PV6dexX6rWzsxN7e3s1aTee+/r37y96vV6dB6ysrNS5z8PDQyIiIsTPz0+dv9LS0tR9S859AwYMUPslNzdX8vPzRa/Xq8c9xscCN27cUPtamV+V7b28vCQ8PNzk+KGwsFCdiwYMGCA+Pj4SGRmp9qVx3ygxl3fsYTxnK+VUJAa9Xi+5ublm+yrlRUREmMVQ2jGRcX3K50aRk5Oj9nVOTo5ZHcp7ohzbVOS4y1KbFcb75+bmlhqXcT+UPCarTB2WYiyrP8qrt6IsxVfeexcRESF6vV4iIiIq3aby+iM8PNxs7KjpNlcHE3Iq09WrV0Wn08mCBQssrh8/frzUr19fiouLxcfHRxo0aCDvvfeexMXFSXR0tFhZWcnJkydF5GbiDUB+/PFHSU5OVs+s79ixQ9atWyd//fWXnDhxQsaNGydeXl5q8iZyMyH39PSUjz/+WOLj4+XcuXNmCfkff/whVlZWMm/ePDl16pSsWbNGHBwcZM2aNaW278aNG5KZmam+Lly4oGlCPmjQIAEgI0eOVJcp7dy/f7/6jfKgQYPU9fv27RMAsnPnzmrVPXHiRAEgM2fONFunxABAJk6caLZ+yJAhAkD+8Y9/mO0zefJki/sqcSvf7Hfq1MliXCXbbNwf3bt3Vw92lOUvvfSSmtD27dtXAJj8fEmJVXlZW1vLqlWrBIC888476r9LvlavXq3W4e3trS5XzrIYl6ucaTdOzkvWC9w8w6G8d6XVu/G7WDl6MYMvjV5bDl4Unxkx8ntCxX4JdCvUhYT894Sr4jMjRrYcvKj5e3K3vj7+4n9m44Mybnfs2LHMpFo5Q238Un4pVN7P393d3QWAtG7d2mzdO++8IwEBAaWWs3r1apk+fboAf58BNv7yURnDjZN15azxzp071X2VLw+ULwdWr15t8vlUEnblp6iTJ09W1xnPq8q8884771RoXq1fv74AED8/P7M5bfXq1ep647Pojz32mACQnj17qsseffRRs3lAmTsef/xxtb6pU6ea9IsSq4jp3Kf0y8SJE9W2zJw50+xYwHjuVspRtl+9erXF4wclBiXW/fv3m/S1ss/y5csrdOxhHLeivBiU+VD5fBvva1yepX0tLTOuryRlXWl9bXx8UFYd5bXZmLK/0j5LcRn3g3Hdla3DUoxl9Ud59VaUpfjKe++Uz9R7771X6TaV1x+TJk0SADJt2jSL62uizdVRlYScN3W7i8TFxUFE0LZtW4vr27Zti/T0dKSmpgIABgwYgOeffx4AMGPGDLzzzjvYuXMnWrduDQ8PDwBAw4YN0ahRI7WMkjex+uCDD+Dm5oZdu3YhIiJCXT58+HCMHTtW/Vu5GY3i7bffxkMPPYRXX30VANCqVSucOHECixYtwpgxYyzGHx0djblz51akK2pFfHw8AGDatGnqsuTkZABAYGAgpk6divXr16vbKcuNt6uquLg4AMDTTz9tts64bGU7Y+np6QCArl27mu2Tl5dncV8lbuV5ugEBARbjKtlm4/44f/48AGD27NlISEgAALRo0QIA4ODggFdeeQXbt29XP5/GsSqmTZumfs7i4+Mxa9YsAED9+vVNto2IiMDOnTsBAFlZWepyETEr19HRETdu3EBxcXGp9QLA1atX1TYpMTRt2hQXL15Ut5m84RDsYrMt9g3Vnovpeejsq3UU2rmYfvP/4ykbD2kbyF0s58Ruk78jIyPVMdXR0VFdXnIMAYDCwkKz8pR9ynumeUFBAYCbY6LCysoKxcXFiI+PR4MGDQD8PRYai4iIQFZWFhYuXIj8/HwAQOfOnbF161YAUMdwb29vdR9lfE1OTsa4ceOwcOFCdSx1d3c3GS8V8+bNwwsvvICioiIApvOO8byq3DxNWVbevHr9+nUAwMKFC83mtIiICHzxxRf44Ycf1LYBgJOTEwAgLS1NXZaRkQHAdB5Q+svJyUmtz9/f36RfjGM1nvsaNGiAhQsXIi4uDjqdDgAwbtw4vPHGGybztfG/lXKU/0ZERKixGm+nzKFKrEpsJftGudFreccexnGXjKW0GJT3V/l8G+9rXJ7Sh8b7WjomMq6vJOP33VJfKzd/rcxxl6U2G1OWK+2zFJfxcuO6K1uHpRjL6o/y6q0oS/GV994pnynlvyWV1aby+uPGjRsA/v58l1QTba5tTMjvQpYmWks6dOig/lun06FRo0ZISUkpc58rV67glVdeQWxsLFJSUmAwGJCbm2syIQE3J/Gy/PXXXxg4cKDJsu7du2PJkiUwGAwW7844a9YsTJ06Vf07KysLzZo1K7OeW8nf3x9Hjx7FW2+9hU8//RTA3wcqx44dw/Lly9XtFMeOHTPZrqoCAgKwfft2fPjhhyZ37S1ZtqXEWTlQ++2338z2MR5YjfdV4lYOCi0l+sDNL1qAv9ts3B/NmzfHhQsXMHfuXMyYMQPA31/U5OXlYf78+QAADw8P5OTkmMSqeOutt9QB2t/fX73reckEOiYmBi1btgQAuLi4qOUpB0PG5SoHuFZWfz8lsmS9wM0vp5Q2KfWWPJBe+kQw2gUFW+wbuvXOpGRjysZDaFrf8gHC3UJp/5JhwWjpWfqTD+jW+X2f4Kn/LVL//t///oeJEydi+/btJkl1yTEEAGxsbEySVODvccrR0VFNGC1R7j5sPCYqCbK/vz+2bdsG4O+x0FhMTIw6ttvZ2SEvLw9//PGHul4Zw40PsF1cXJCbmwtvb2989NFHAP7+AkBJcmNiYky+PH7ttdcAAHq9HkVFRSbzjvG8+txzz6nLgPLn1Xr16iE9PR3Tp0/Hxx9/DODvOS0mJkZti52dndqfytzg7u6ulqc8CcZ4HlD6KycnR61PSQaUfjGOy3ju27JlC4Cbc6qyXukr4/na+N/Kdsp/Y2Ji0L59e7PtlDlUifXYsWO47777zPpG+TyVd+xhHLdSTnkxKPOhclxivK9xecqxqfG+lo6JjOsredLB+H231NdHjhwx26684y5LbTam7K+0z1Jcxv1gXHdl67AUY1n9UV69FWUpvvLeO+UzVXKsUpTVpvL6w97eHoD5yTxFTbS51tX8iXqqq9LS0kSn08nrr79ucX3Jn6yX/KnHPffcI7NnzxaR0m/q1q9fP+ncubNs3bpVjh07JnFxceLu7m5SFgDZsmWLyX4lf7LesWNHmTNnjsk2X3/9tdjY2FT4+mpeQ85ryHkNORk7elH7a6frwk/W60I/3O14DTmvIec15LyGvLJ18BpyXkNOd4i+fftKkyZNKnRTt7IS8qSkJAEgf/zxh8k2zs7O8umnn6p/nz9/3uw6jook5MOHD5c+ffqYbBMVFSXt27evcFu1TshFTO+yPmLECDlw4IDJtWht27aVrKws2bdv3y29y/r06dPl1KlTMn36dLO7rO/bt88sBuO7rCv7KtfuKS9PT0+ZPn16mXdZV9o8YsSISt9lvV69egKUf5f1e+65x+KBZ0Xusm78Xiivit5lXbkWsyIv3mW9bqgLiSgTclJU5y7rtfn4xt69e5vc2by0u6x37tzZ4rgbHBxc7l3WnZ2dy73LujJXGccSEhJSqXnVuA4liS7vLuvKvVGMX+XdZV3phz59+pjdZd3SnBoSEqLGbHyX9VWrVklSUpKsWrXK7C7rSn8MHz5cXf7ss8+abW/pLuurVq2qkbusVzQGS3dZV/ZdsGCBuu+CBQsqdExkfFfx0vrIeN2ECRPU5cOHD6/0cZeluC3tX15cFb3Lell1WFKdeiuqKu+d8V3WK9um8vrD+C7rt6rNVcWEnMp1+vRpcXd3l5CQENm1a5ecP39evvvuOwkMDDR57Fl5CXlhYaE4ODjI/Pnz5fLly5KRcfPArmPHjtKnTx85ceKE/PLLLxISEiIODg6VTsgPHDhgclO3tWvXlntTt5LqQkIuUvHnkPv5+Wn+HHLjGPgc8pp5ifA55HVFXUhEmZCTgs8hv/XPIbc0r9b155D7+fnV6nPIq3LsURvPIS8vrpp4Dnll2l7eMVNF4qqpOirbHzWltPeu5HPIjWOuTpvK2/dOeg65TqSCFxTTHePcuXOYPXs2vv/+e1y7dg2NGjXCoEGDMHv2bPU6WF9fX0yZMgVTpkxR9wsODsagQYMwZ84cAMCHH36IefPmISkpCSEhIYiNjcWff/6JZ555BseOHUOzZs2wYMECTJs2zaQsnU6HLVu2YNCgQWrZsbGx6N27N9LT09XrszZt2oTXXnsNcXFx8Pb2xosvvmhyg7TyZGVlwdXVFZmZmXBxcalOl1VbdnY2Ro4cifj4ePj7+2PdunVwcHDAnj17kJycDG9vb4SEhFi8Nr668vLyEBUVhbi4OAQEBGDRokXqdXMGg6HMGCzta2triz179uDChQv49ddfISIICAjA888/r16fWFqbnZ1Lv17VOBYnJye8+eabuHDhApo1a4YZM2bg+vXrSE1NhYeHB5o0aYKQkBAYDAasWLEC8fHx6s1a/vjjD3zxxRcAbn7WDh8+jKCgILWegoICrFixAqdOncLly5fh7e0Nf39/BAUFISEhAbNnz0Z2djbc3d2xaNEiFBQUqPW6urrigw8+QEJCAlxdXTFu3Dg0adIER48eRWxsrHrdEgDs2LFDvcnhwYMH0alTJxw4cAD33ntvDbyrVBXHkjIRsexnxLzYA4FNXDWJ4cTVExgWMwwbIzaiXcN2msRQF/qB/h4XfvvtN+Tk5GD79u0m9/wIDw/HjRs3cOXKFXh5eaFVq1YYOHAgLl++jK+//ho5OTnw8fFBcnIy/vrrL/V6SisrK0ydOhVZWVk4fvw4HBwc0LRpU/z000+4evUqbG1tMXDgQLRq1Qr79+9HYmIi6tevj927b95oThk3W7ZsiaioKJw+fRpOTk4YNGgQvL29cfToUSQmJsLf3x/PP/88MjMz0bVrV6SkpKBevXqYO3cufHx88N///hdxcXHIy8tDUFAQWrdubTZPnD9/Hu3bt0dubi6sra3x+OOPo3PnzmbbWZqr8vLyqjyvXr58GcHBwcjIyICbmxuWLl2KgoICdU7z9fUFACQmJkKn06Fbt25o3LgxAODSpUvqdsrccfnyZXWZcrO5c+fOqX2ktKWsObVkzMpcpbTPuBxL/WE8H5bc3nifpKQks7m0KsceVYmhrH0BVPqYqKw+srTO2tq6Wsdd5R0zVSSumqqjsv1RU6ry3lWnTeXtWxttrqyq5B9MyOmOVZcScrq7MSGvG+pCIsqEnBQcF4iI7jxVyT+syt+EiIiIiIiIiGoaE3IiIiIiIiIiDTAhJyK6xdq0aYMDBw6gTZs2WodCRHUExwUiIgIAvdYBEBHd6RwdHXmNKBGZ4LhAREQAz5ATERERERERaYIJOREREREREZEGmJATERERERERaYDXkBMR0V0hr9AA4OZzuLWSkJUNAIhPyUbxDW3iOJOSrUm9REREZI4JORER3RXi/z8Rnbn5qGYx6PRZsHF7CJPWx0OKUjWLAwCc7HgIQEREpDXOxkREdFfo274RAMDf0xkONtYaRjJAw7pvcrLTw8/dSeswiIiI7npMyImI6K7QwMkWT3RtrnUYRERERCre1I2IiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDSg1zoAIiKiWyEhLQc5+UVah1FnONnp4efupHUYREREZIQJORER3XES0nLQ+61YrcMwo9NnwcbtVxRmdIMUudR6/Tun9WJSTkREVIcwISciojuOcmZ8ybBgtPR01jiavyVkncLLvy3A4vDh8HNpXWv1nknJxpSNh/iLASIiojqGCTkREd2xWno6I7CJq9ZhqKzsb3454O/pjHYN605cREREpA3e1I2IiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIqIbk5ubi4MGDyM3N1ToUIqrjOF4QERHAhJyIqMacPHkSnTp1wsmTJ7UOhYjqOI4XREQEMCEnIiIiIiIi0gSfQ051QmxsLHr37o309HS4ublpHU6Ny8vLQ1RUFOLi4hAQEIBFixbBwcFB67DKZTAYsGfPHiQnJ8Pb2xshISGwtra+5eWV118FBQVYsWIF4uPj4e/vj+effx62trYV2leJISkpCampqfDw8ECTJk0QEhKCgoICdd8WLVrgkUceQUZGRo20nYjIkoKCAixZsgSnTp3C0aNH4eDggICAADzyyCNIT09Xxx+DwWA27llbW5c6nhlv7+vri6CgIKSmppptZ21tjezsbIwcOVIte926dXBwcKjQeF3WmAqgzDKU8frUqVPIy8tDUFAQWrdubdK20vYtq966OlYbz4Genp4AgJSUlFqdX6syr9f0sQARlSBUq0aPHi0AJDo62mT5li1bpC68HTk5OTJz5kxp0aKF2NnZibu7u/Ts2VO+/vrrGqsjNDRUJk+ebLIsPz9fkpOTpbi4uMbqyczMFACSmZlZY2VWxcCBAwWA2WvgwIGaxlWeTZs2ia+vr0nMvr6+smnTpltaXnn9FRUVJXq93mSdXq+XqKiocve1FIPycnR0tLi8Mm0/cOCAAJADBw5UqY+o5hy9mCE+M2Lk6MUMrUMxcTztuASuDZTjacdrtd662h93M2W8sLa2LnPsASAuLi5iZWVlsszKykpcXFwqvH1p45q/v7/Fdba2tuWOgWWNqZ6enuLh4VFqGaWN10rbXF1dS923rHqrM0/dSmXFXFvza1Xm9Zo+FiC601Ul/9A+A7zLjB49Wuzt7cXNzU2uXbumLq8rCfnIkSOlVatWsnXrVklISJA//vhD3n33Xfnoo49qrA5LCfmtUBcScuWAw9bWVmbOnClnzpyRmTNnqgc6dTUp37Rpk+h0OomMjJT9+/fL9evXZf/+/RIZGSk6na7SE3FFyyuvv5QDRy8vL1m9erUkJyfL6tWrxcvLy+Qg0tK+Xbp0EZ1OJ507dxadTidhYWGyevVqCQsLMznQ6Natm1qXjY2NAJCQkJAKtZ0Jed1RVxNQJuSkGDVqlABQxxkbGxvp2LGjSVIKQJo0aaIue+655yQ5OVmee+45k3GrtPGsX79+agJlvCwsLEx0Op36RaROp5ORI0fK4cOHJTQ0VN22bdu2pY7Xyrhe3pgaHR1tVkaXLl1M2uju7i79+/dX+0J5jRgxwmzfqKioMutVltelhNF4DoyOjhadTic9evSQHj16qH10q+fXqszrNX0sQHQ3uGUJ+eHDhyv8orKNHj1aIiIipE2bNhIVFaUut5SQf/XVV9KuXTuxtbUVHx8feeutt9R1s2bNkq5du5qV36FDB5k7d66IiPz222/y8MMPS8OGDcXFxUV69uxZbqLg6uoqa9euLXObGzduyPTp06Vp06Zia2sr/v7+8uGHH6rrY2NjpUuXLmJrayuNGjWSGTNmSGFhodr+kt8KJyQkyM6dOwWApKeni4hIWlqaPPHEE9K4cWNxcHCQwMBA+c9//lNmXCVpnZDn5uaqCWJ+fr7Juvz8fDVRzM3N1SS+0hQVFYmvr69ERkaKwWAwWWcwGCQyMlL8/PykqKioRsu7fv16mf2lHKh5enqqnydFVlaW+nm6fv262b5KX4eFhZnFkp2dbXJQq9frJSIiQgwGg8m+2dnZ5badCXndUVcTUCbkJHJzXDI+M25rayu5ubni6+sr4eHh4uXlJXq9Xt3G09NTwsPDxc/PT/Lz88XX11cGDBggVlZWotPpJC8vT0RE8vLyRKfTiZWVlTqehYeHi4+Pj0m5eXl5Jolzs2bNpKioSB2vlYTdeEw1Hq+VGCIiIszG1IKCAnFwcBAHBwc1ZmXMNBgMMmDAAPULCGtra/Hy8lLHdGXeBCAeHh6i1+vV+cBgMEhERITappL1KvEpcVVmnrqVjOfAgoICk7iN+7SgoOCWza/K+1WZeb2mjwWI7hZVyT8qdA15cHAwdDodRMTiemWdTqeDwWCoSJF3NWtrayxYsADDhw/HpEmT0LRpU7NtDhw4gMcffxxz5szBsGHDsG/fPjz//PNo2LAhxowZgxEjRiA6Olq93gsAjh8/jiNHjmDTpk0AgOvXr2P06NFYtmwZRASLFy/GgAEDEBcXh3r16lmMrVGjRvj222/x6KOPlrrNqFGjsH//frz77ru45557kJCQgLS0NABAUlISBgwYgDFjxuDTTz/FyZMnMX78eNjb22POnDlYunQpTp8+jcDAQMybNw8A4OHhgcTERJM6bty4gU6dOmHGjBlwcXHB1q1bMXLkSPj7+6Nr164W48rPz0d+fr76d1ZWVhnvwq0XFRUFAJg6dap6fbPC1tYWU6ZMwcKFCxEVFYXly5drEaJFe/bsQWJiIj7//HNYWZne99HKygqzZs3CAw88gD179qBXr141Vt7IkSMBlN5fPXr0wM6dO9GuXTvo9aZD16xZs9R/f/jhh5gyZYrJvo8++ig2bNiAnJwcs1hmzJihbtuqVSt89913CAsLg5WVlcn7NGPGjHLbfqPw5vh3JuU6bJMyy+0bunXOpGQD+Ps9udv9/dnM1jgSAoB1q1eYHC9NnToVv/76qzo+HTlyBBMmTIC/vz/i4+PRrl07/Otf/8IDDzyAFStWIDExEVFRUfj2228BACtXrsSUKVOwcuVKyM2TLQgICMB3332Hli1bYuvWrdiwYYNa7sqVK5GTkwMA6NKlC37//Xfs2bMHANQYGjRogPXr12PkyJHYsmWLyXhtHENMTIzJmLp3717k5eUBAMLCwrB161Z1zLSysoK9vT0AICgoCAcPHsT8+fPVMf3XX39V+6R9+/aIjY3FihUrMGXKFFhZWaF///6IiYlR22Rcr3F806ZNQ0xMTIXnqVvJeA7cu3ev2RykxLx3795bNr8q71dl5vWaPhYgotJVKCFPSEi41XHcdQYPHozg4GDMnj0bH330kdn6t99+Gw899BBeffVVADcThRMnTmDRokUYM2YM2rdvj3vuuQf/+c9/1G3Wr1+Pbt26oWXLlgCABx980KTMDz74AG5ubti1axciIiIsxvXBBx9gxIgRaNiwIe655x706NEDQ4cORffu3QEAp0+fxhdffIEffvgBDz/8MACgRYsW6v4rVqxAs2bNsHz5cuh0OrRp0waXLl3CjBkz8Nprr8HV1RW2trZwdHREo0aNSu2fJk2aYNq0aerfL774IrZt24Yvvvii1IQ8Ojoac+fOLbXM2hYXFwcAePrppy2uHzduHBYuXKhuV1ckJycDAAIDAy2uV5Yr29VUefHx8QBK76/GjRsDAIqLi83WGfehUo6xzp07Y8OGDeoXR8axGO+rHEQa3wTO+H0qr+0X028+T3jyhkOwi2XiUxdcTM9DZ1+to9DexfSbn+0pGw9pGwgBAK79sM/k76effhq//fYbgJvjU/PmzQFAvXFWcXGx2VhpPE4py4zHvxs3bgD4e1wzLjc+Pl4dD8PDw/H777+bjGuBgYGYOnUq1q9fb1JmaTEYj6nG5SjrjZdlZGSYrDM+HjHeThnrjetX9jFukzHlb0v1asV4Dvzf//6n/lthPK8ofXGr5tfKzOs1fSxARKWrUELu4+Nzq+O4K7355pt48MEHTRJPxV9//YWBAweaLOvevTuWLFkCg8EAa2trjBgxAh9//DFeffVViAg+//xzTJ06Vd3+ypUreOWVVxAbG4uUlBQYDAbk5ubi/PnzpcbUs2dPnD17Fr/88gv27duHHTt2YOnSpZg7dy5effVVHDp0CNbW1ggNDbW4/19//YX7778fOp3OJO7s7GxcvHhRPRgoj8FgwIIFC/DFF18gKSkJBQUFyM/Ph6OjY6n7zJo1y6T9WVlZaNasWYXquxUCAgKwfft2fPjhh4iOjjZbr3wRExAQUNuhlcnb2xsAcOzYMdx3331m648dO2ayXU2V5+/vj6NHj5baX5cuXQIAs2/qgb/7WimnpD/++AMA4O7ubhaL8b4lD/YA0/epvLY3rX/z87n0iWC0Cwq2uA3VjjMp2Ziy8RCa1q/7TzOoDUo/LBkWjJaezhpHQ+vsj2DhwRj17w8//BD9+vUDcHN8OnLkCACoZ9GtrKxMxkrAdJxSlhmPf8qZaGVcMy7X399f/ffWrVsBmI5rx44dU3+5ZVxmaTEYj6nG5SjrjZcpT1JR1sXExKhfxBpvp4z1xvWX/NK05LyixGepXq0Yz4GW5kPjeeVWzq8V2c643po+FiCiMlTlt/GffvqpPPDAA+Lt7S2JiYkiIvLOO+/U6J2471SjR482uZHXgAEDZODAgWbXkHfs2FHmzJljsu/XX38tNjY26vU6Fy5cEJ1OJwcOHJCff/5ZrK2t5cqVK+r2/f6vvTuPj6o6/wf+mcyQnSQsSQhLFkIk7CiLgkZAWbMIii0KxqDYsrilkUFwQywlv4I7NoJYoVIUbBFaQ90LmAIFDCLEfMEkBqMxGNbsZBme3x/0XmeYSTJJZuZm+bxfr7w0dznnuWeGc84zk3vulCkycuRI2bVrl2RlZUlOTo50795dXnrppSbF/Pvf/146deok1dXV8s9//lP0er3U1NTYPPb222+XuXPnWmw7evSoAJDvv/9eRGwv6nb1PeSpqanSrVs32bx5sxw9elRycnIkLi6uSYug8R7y5uE95LyHvD1orfdM8x5yEuE95OA95LyHnKidcskq62lpadK9e3dZuXKleHl5SV5enoiIbNy4UcaPH9/U4jqcqxPyY8eOiZubmyxZssQiIZ89e7ZMmjTJ4lyj0SiDBg2y2DZ+/HhJSUmRhQsXytSpUy32+fr6yttvv63+XlBQIACanJArq2yWlJRIfn6+6HQ6+fTTT20e+8QTT0j//v0tHl/2pz/9STp37qx26JMmTZKHHnrI4ryrE/L4+Hi5//771f0mk0mioqLaVEIuYrlq+JIlS+TkyZOyZMmSNrXK+v79+6W0tFT279/vkFVgGyqvsfYyX2V9/fr1UlhYKOvXr7daZd3WubZWWV+/fr3VisCjR48WANK3b1+ust6GtdYElAk5KWytsj58+PAGV1lfsGCBFBYWyoIFC6xWWbfVn02aNEkASFhYmLpt8uTJNldZnzNnjmRmZsrNN99sscp6ff21rVXWbcWwatUqqzKuXmW9W7duMnnyZKtV1mfPnm11rq1V1s3rbe2rrK9atUpdZf3GG29U28jZ42tzxnVHzwWIOgKXJOQDBgyQHTt2iMiVhE9JyI8fPy7dunVranEdztUJuciVR415enpaJOSZmZni5uYmzz33nJw8eVI2bdokXl5esnHjRotzN2zYID179pTu3bvL5s2bLfZde+21MmnSJMnOzpb//ve/EhMTI15eXg0m5OPGjZN169bJl19+Kfn5+bJr1y7p37+/3HLLLeoxc+fOlT59+siOHTvku+++k927d8u2bdtEROTHH38Ub29vefDBB+X//u//ZOfOndK9e3dZvny5ev5vfvMbGTVqlOTn58uZM2fEZDJZJeS/+93vpE+fPrJv3z7Jzs6WBx54QPz8/NpcQi7Svp5DHhER4dDnpNoqr7U+h9yea2dC3nq01gSUCTkpWsNzyCMiIux+DrmtPrCpzyE3L6OpzyE3P7ehelsyTjlTY88hd8X42pxx3dFzAaL2rjn5h06knqXT6+Hl5YUTJ04gLCwMnTt3xtdff42+ffsiJycHQ4cOtbiniazNnTsXFy9exM6dO9Vtp06dQv/+/VFTU2Oxkv327dvxzDPPICcnByEhIXj44Yet7je/ePEievToAb1ej59//hm+vr/cG/jVV1/ht7/9LbKystCnTx+sWrUKixcvRnJyssUq1OZSU1PxwQcf4OTJk6isrETPnj0RHx+PZ555Bt26dQNwZaGYJ554Alu3bsW5c+cQGhqKJ554Avfddx8AYO/evTAajfj666/RtWtXJCUlWayi+u233yIpKQlff/01qqqqkJ+fj1OnTmHChAm4cOECAgICcP78edx///34/PPP4e3tjd/+9rcoKChASUmJRds1pLS0FP7+/igpKYGfn59d5zhLVVUVjEYjcnJyEBUVhTVr1lgsyNNamUwmZGRkoKioCCEhIYiJiVEXGXJmeY21V01NDdLS0tSnDCxatEhdmb2xc5UYCgsLcebMGQQGBqJXr16IiYlBTU2Nem7fvn1x22234eLFi3Zf+5EjRzBixAhkZmbiuuuua3Y7UctlFZYgfu1/kP7wTRjcy1/rcFTZ57IxK30WtsVvw8BuA11Wb2ttj45M6S8OHDiA//73vzh58iSOHz8OLy8vREVF4bbbbsOFCxfU/sdkMln1e3q9vt7+zPz48PBwDBkyBGfOnLE6Tq/Xo7y8HImJiWrZmzdvhpeXl139dUN9KoAGy1D665MnT6KqqgpDhgxB//79La6tvnMbqrcl45QzmY+BQUFBAIDi4mKXjq/NGdcdPRcgas+ak380OSEfOHAgUlNTMX36dIuEfO3atdi4cSOOHDnSrOCJHK01JeTUMTAhbz1aawLKhJwU7C+IiNqf5uQfdq2ybi4lJQUPPvggLl26BBHBoUOH8O677yI1NRVvvvlmk4MmIiIiIiIi6oianJA/8MAD8PLywlNPPYXKykrMnj0bPXv2xCuvvIK77rrLGTESERERERERtTtNTsgBYM6cOZgzZw4qKytRXl6u3gdDRNSRRUdHIzMzE9HR0VqHQkStHPsLIiICmpmQA1cWoTh58iQAQKfTITAw0GFBERG1Rd7e3rwXlIjswv6CiIgAwK2pJ5SVlSExMRE9e/bEuHHjMG7cOPTs2RP33HMPSkpKnBEjERERERERUbvT5IT8gQcewMGDB7Fr1y5cvHgRFy9eRHp6Or788kvMnz/fGTESERERERERtTtN/pP19PR0fPzxx7jpppvUbVOmTMGGDRswdepUhwZHRERERERE1F41OSHv1q0b/P2tn2Hq7++PLl26OCQoIiKilqiqNQG48vzt1iS/tBwAkFdcjsuXXBdbbnG5y+oiIiIi+zU5IX/qqaeQkpKCzZs3o0ePHgCA06dPw2g04umnn3Z4gERERE2V978EdOn7xzWOxJLOUIpOAbfikS15kLozLq/fx6PZa7kSERGRE9g1Ml977bXQ6XTq7zk5OQgNDUVoaCgAoKCgAB4eHjhz5gzvIyciIs1NHnTlA+PIIF94ddJrHM3VYjWp1cfDgIjuPprUTURERLbZlZDPmDHDyWEQERE5Tlcfd9w1OlTrMIiIiIgapBMR0ToIImcoLS2Fv78/SkpK4Ofnp3U4RERERETUjjUn/2jyY8+IiIiIiIiIqOWavLqLyWTCSy+9hPfeew8FBQWoqamx2H/+/HmHBUdERERERETUXjX5G/IVK1bgxRdfxKxZs1BSUoKUlBTccccdcHNzw7PPPuuEEImIiIiIiIjanyYn5Fu2bMGGDRvw2GOPwWAw4O6778abb76JZ555Bv/973+dESMRERERERFRu9PkhPz06dMYMmQIAMDX1xclJSUAgPj4eOzatcux0RERERERERG1U01OyHv37o2ioiIAQGRkJD755BMAwOHDh+Hh4eHY6IiIiIiIiIjaqSYn5Lfffjs+//xzAMDDDz+Mp59+GlFRUbj33ntx//33OzxAIiIiIiIiovaoxc8hP3DgAA4cOICoqCgkJCQ4Ki6iFuNzyImIiIiIyFWak380+bFnVxszZgzGjBnT0mKIiIiIiIiIOhS7EvJ//vOfdhd42223NTsYIiIiIiIioo7CroR8xowZdhWm0+lgMplaEg8RERERERFRh2BXQn758mVnx0FERERERETUoTR5lXUiIiIiIiIiajkm5EREREREREQaYEJOREREREREpAEm5EREREREREQaYEJOREREREREpIEmJ+QTJ07Epk2bUFpa6ox4iIiIiIiIiDqEJifkgwYNwrJly9CjRw/86le/wj/+8Q/U1tY6IzYiIiIiIiKidqvJCfkrr7yCwsJC7Ny5Ez4+Prj33nsRHByM3/72t9i7d68zYiQiIiIiIiJqd3QiIi0p4NKlS/jggw/whz/8AcePH4fJZHJUbEQtUlpaCn9/f5SUlMDPz0/rcIiIiIiIqB1rTv5haEmFp0+fxtatW/HXv/4Vx44dw+jRo1tSHBEREREREVGH0eQ/WS8tLcXGjRsxadIk9OnTB6+//jpuu+025OTk4L///a8zYiQiIiIiIiJqd5r8DXlwcDC6dOmCWbNmITU1FSNHjnRGXERERERERETtWpMT8n/+85+49dZb4ebGR5gTERERERERNVeTE/JJkyYBAM6cOYOTJ08CAPr374/AwEDHRkZERORE+WcrUFFdp3UYrY6PhwER3X20DoOIiKhDaHJCXllZiYceeghvv/02Ll++DADQ6/W49957sXbtWnh7ezs8SCIiIkfKP1uBCc/vcXm9OkMpOgUcRO3F6yF1rffpD7sXj2dSTkRE5AJNTsh/97vfYe/evfjggw9w4403AgD+85//4JFHHsFjjz2G119/3eFBEhEROZLyzfjLs4ajX5Cvy+rNLz2JJw6twgtxsxHh199l9dort7gcyduO8i8HiIiIXKTJCfn27dvx97//HePHj1e3xcbGwsvLC7/+9a+ZkBMRUZvRL8gXg3v5u6w+N88ryX9kkC8GdnNdvURERNQ6NXlltsrKSgQHB1ttDwoKQmVlpUOCIiIiIiIiImrvmpyQjxkzBsuXL8elS5fUbVVVVVixYgXGjBnj0OCIiIiIiIiI2qsm/8n6yy+/jKlTp6J3794YNmwYAODrr7+Gp6cnPv74Y4cHSERERERERNQeNTkhHzJkCHJycrBlyxacOHECAHD33Xdjzpw58PLycniARERERERERO1RkxLy2tpaREdHIz09Hb/5zW+cFRMRUZtUWVmJEydOIDo6mo+AJCKHYx9DRNT+NOke8k6dOlncO05ERL84ceIERowYof71EBGRI7GPISJqf5q8qNuDDz6IP/7xj6ir4zNKiYiIiIiIiJqryfeQHz58GJ9//jk++eQTDBkyBD4+Phb733//fYcFR+3P+PHjMXz4cLz88suNHrtnzx5MmDABFy5cQEBAgNNjcyaTyYSMjAwUFRUhJCQEMTEx0Ov1raY8Z6ipqUFaWhry8vIQGRmJRYsWwd3dvdnl2bpmAFbbqqqqkJiYqNa7efNm+Pr62hWfXq9vsF2rqqpgNBqRk5ODqKgorFmzhmtnEJHmbPVN7u7uan/m7++P9evX47vvvoO/vz/mzZuH0NBQAEBxcTG6deuG48eP49SpU1b9YWFhIc6cOYPAwED06NFDPaehfrihbT/88AMOHjwIEUHfvn0xZMgQnDt3rsGxTOn/zWPp1atXs8e+xsbQloyxzhyf7R1XGxrfHNWG1Pq0hbkh1UOaaO7cuQ3+tBdJSUkCQFJTUy2279ixQ5rRbC0CQP3R6/XSp08f+d3vfieXLl1yaRyOcO7cOSktLbXr2N27dwsAuXDhQrPqKikpEQBSUlLSrPMdZfv27RIeHm7xOoaHh8v27dtbRXnOYDQaxWAwWMRoMBjEaDQ2qzxb1xwYGChBQUEW29zd3S1+V35GjRrVaHxubm7i5+dXb7tOnz7dZtnTp09Xy83MzBQAkpmZ2ey2I9c4/uNFCXs8XY7/eNGl9X5z9hsZvGmwfHP2G5fWay+t2oXsY6uPqa9v8vLysrndnh9b/aGtH1v9sL3bbP3YGsts9f8tGfsaG0NbMsY6c3y2d1ytb3zz9/d3WBtS69MW5oYdRXPyD9dmlm1IUlKSeHp6SkBAgJw/f17drlVCvnHjRikqKpKCggL54IMPpHv37vLUU0/Ve051dbULI3SO9pCQb9++XXQ6nSQkJMiBAwekrKxMDhw4IAkJCaLT6Zo1kXBkec5gNBoFgAQHB8uGDRukqKhINmzYIMHBwQKgyUm5rWtOTU1VB5zU1FQpKyuTAQMGqNvGjRsnX3/9tSQmJopOp7NIym3Ft3DhQvXcOXPmWLXrqFGj1IR/6dKlkpubK0uXLlU/AFCScibkbQcTctuYkLduV/cxSjJu3jfdfvvtan/m6+trMwFT/r9Tp07qcUOHDhUAMmXKFIvjp02bZtFHRkdHq33l1f2wrb7ZfJuSnNuKcc6cOVZjmdL/jxw5Uo1lw4YNMm3aNHV7U8a+xsZQo9HY7DHWmeOzveNqY+ObI9qQWp+2MDfsSJyakJtMJvl//+//ydixY2XkyJHy+OOPS2VlZbMCbQuSkpIkPj5eoqOjLRIIWwl5RkaG3HTTTeLp6Sm9e/eWhx9+WMrLy0VEZO3atTJo0CCr819//XV126233ipPPvlkvbEAkB07dlhsmzdvnsTGxqq/L1++XIYNGyYbNmyQ8PBw0el0IiISFhYmL730ksW5w4YNk+XLl1uUv2HDBpkxY4Z4eXlJv3795B//+Ie6//z58zJ79mzp3r27eHp6Sr9+/eStt94SEZGZM2fKgw8+qB776KOPCgD5v//7PxG58sGAt7e3fPrppyIiMm7cOHn00UfV4y9duiRLliyR3r17i7u7u0RGRsqbb74pItYJeUVFhUydOlXGjh1rV5KudUJeV1cn4eHhkpCQICaTyWKfyWSShIQEiYiIkLq6Ok3Kc4bq6moxGAwSHBwstbW1Fvtqa2slODhYDAaD3R8Y2bpmZVt8fLzEx8dLRESEXLx4UQCITqeT2NhYi3aoqqpSk/Jz585ZxaeUFxcXZxWfyWSS2NhYdcJ7ddzV1dVqUl5ZWcmEvA1hQm4bE/LWzbyPqaystOqblP4sNjbW4i+GQkNDJT4+XuLi4sRgMMjUqVPVfe7u7hIeHi41NTUSHx8vBoNBpk2bJm5ubqLT6aS8vNyiz1X6S4PBIHFxcWo/XF1dbdU3K9vi4uIEuPJXfhUVFVbHBQUFicFgkKqqKnUsMy8vLCzMYhwwH/OUMhob+xobQ5Vrj4+Pb/IY68zx2d5xtaysrMHxTafTiU6nk6qqKqu47G1Dan3awtywo2lO/mH3PeR/+MMf8Oyzz2LixInw8vLCK6+8guLiYrz11lv2FtHm6PV6rFq1CrNnz8YjjzyC3r17Wx2Tl5eHqVOnYuXKlXjrrbdw5swZPPTQQ3jooYewceNGjBs3Do888oh6v87evXvRvXt37NmzBwsWLEBtbS0OHDiApUuX2h3Xt99+i3//+9+YO3euxfbc3Fxs374d77//fpPvGVmxYgVWr16NNWvWYO3atZgzZw6+//57dO3aFU8//TSys7Px4Ycfonv37sjNzUVVVRUAYNy4cVi/fr1ajvn1RUdH4/Dhw6itrcXYsWNt1nvvvffiwIEDePXVVzFs2DDk5+fj7NmzVsddvHgRcXFx8PX1xaeffmrzcS/V1dWorq5Wfy8tLW1SGzhaRkYGTp06hXfffRdubpbrJ7q5uWHZsmUYO3YsMjIyMH78eJeX5wxpaWmoq6vDypUrYTBYdi8GgwHPPfcc5s+fj7S0NCQnJzdanq1rNt8mIhg7dizi4uIAAPfccw8WLlxo0Q6enp6YPXs2tmzZgnHjxlnFZ17esWPHLOJzc3NT7xG/8847re7Vc3d3R3JyMlavXg2j0YjZiUkAgNziMrgXlrSoLcm5covLAQCXak0aR9K6KO2htA+1LrnFZQCuvE5GoxEAkJKSovZN5v1ZTk4OcnJy0Lt3bxQUFGDbtm3IzMzErl27kJCQgOLiYhw5cgShoaHIzc3Fvn37MHXqVKSnp+Oaa67Bhx9+CAB4/PHHrfrc2267DXV1dYiNjcW1116LsWPHIi0tzeo4Zdv06dMBXLnH9Y033rA6LiUlBS+++CLWrVunjmXKuUajEenp6di6das6DpiPeY899hjS09MbHfsaG0OVa582bVqTx1hnjs/2jquJiYn1jm9GoxG7du0CAKxbt04d35rahtT6tIW5ITXO7oT87bffRlpaGubPnw8A+OyzzxAXF4c333zT6g3Qntx+++0YPnw4li9fjj//+c9W+1NTUzFnzhw1uYiKisKrr76KcePG4fXXX8fgwYPRtWtX7N27F3feeSf27NmDxx57DK+88goA4NChQw0mrIq7774ber0edXV1qK6uRnx8PJYtW2ZxTE1NDd5++20EBgY2+Trnzp2Lu+++GwCwatUqvPrqqzh06BCmTp2KgoICXHvttRg5ciQAIDw8XD1v/PjxePTRR3HmzBkYDAZkZ2fj6aefVj9w2LNnD0aNGmUzgf7222/x3nvv4dNPP8XEiRMBAH379rU67vTp05g1axaioqLwzjvv1LswWGpqKlasWNHka3eWoqIiAMDgwYNt7le2K8e5ujxnyMvLAwDEx8fb3K9sV45rjK1rNt8mIgCAgoICAMDixYsRERFhcRxwZcK6ZcsW/PTTT1bxmZenLHJkHt+FCxcAQH3/X23evHlYvXo1cnJy8OOFSgDAo1uPwmMPE5q24McLVRgZrnUUrcePF6582Jq87ai2gZBN1adzAQA/XqhETk4OAOCBBx5Q99vqMz09PdVt2dnZAAAvLy9ERkbiyJEj6hyuqKhI/QBS+dAdgFqPeZ+rPALXy8tLrUvpN82PU7aZl2fruMjISHXfvHnzLI5TYrp67FN+V/Y3NvY1NoYq5dS3UGdDY6wzx+emjqu2xjfzazIf35rahtT6tIW5ITXO7oS8oKAAsbGx6u8TJ06ETqfDTz/9ZPOb4/bkj3/8I2655RYsXrzYat/XX3+NY8eOYcuWLeo2EcHly5eRn5+PAQMG4Oabb8aePXswceJEZGdnY9GiRVi9ejVOnDiBvXv31puwmnvppZcwceJEmEwm5ObmIiUlBYmJidi6dat6TFhYWLOScQAYOnSo+v8+Pj7w8/NDcXExAGDhwoWYOXMmjhw5gsmTJ2PGjBnqBwjmHzi4u7vj2muvRXx8PP70pz8BuPKNeX2fyB09ehR6vR7jxo1rMLZJkyZh9OjR2LZtW4Pf/C9btgwpKSnq76WlpejTp49d1+8MISEhAICsrCzccMMNVvuzsrIsjnN1ec6gTKrS09MtJomK9PR0i+MaY+uazbcpk7nQ0FD88MMPeP7557Fw4UKL4wDgxRdfBAD07NkT58+ft4jPvLxjx45ZxdelSxcAwJdffmkzRuWDuqioKPTucuXf8St3DcfAIcPtukbSRm5xOZK3HUXvLlwl35zSHi/PGo5+QdZPJyBtZR/3xay/AL27eCMqKgqffPIJ3nzzTaSmpgKw7M8USvKclZWlJsZVVVVqYnb58mX13G+++QaAZQKn1GPe5ypJflVVlVqX0m+aH6dsMy/P1nFKLJGRkVblKTFfPfYpxyn7Gxv7GhtDzdvGlobGWGeOz00ZV48fP25zfDO/JvPxraltSK1PW5gbkh3s/dt2Nzc3KS4uttjm6+sr3333nd1/H9+WJCUlWayeHBsbK9OnT7e6hzw6OloefvhhycnJsfpR7ul65ZVXZNCgQfLPf/5Trr/+ehG5shDL66+/LpMnT5Zly5Y1GAts3EP+7rvvCgDJyckRkV/uIb9aRESEvPjiixbbBg4caHUP+dXl+/v7y8aNG9Xfi4uLZdOmTTJnzhzx9PSUxx57TN13++23y4MPPigpKSny+OOPi8lkki5dusjx48fFx8dHPv74Y/VY83vI//nPf4per5eamhqb163cQz5//nzp3r27HDt2rJ4Wso33kLse7yHnPeRtBe8ht433kLduvIec95Cb4z3k1Bbmhh2NUxd1Uya6t99+u/pjMBhk8uTJFtvai6sT8mPHjombm5ssWbLEIiGfPXu23HrrrQ2WdfToUdHpdJKYmCiPP/64iIi89NJLMnPmTKuE1RZbCfN7770nANQktb6EfPTo0RaL0pWUlIiXl1eTE3Jz69atk86dO6u/v/zyyzJo0CC57rrr5MMPPxSRKx843HvvvWIwGNQF7kQsE/L8/HzR6XTqgm9XM1/U7bHHHpPAwED55hv7J7FaJ+Qilitf7t+/X0pLS2X//v0OWWXdEeU5g/kqr+vXr5fCwkJZv369Q1ZZV6551apV6mRy1apVUlpaarHKekxMjGRmZsqcOXMaXGVdiW/BggXqubNnz7ZqV/NV1pcsWSInT56UJUuWcJX1NowJuW1MyFu3hlZZV/qmGTNmNLjKelhYmM1V1ocMGSIAZNKkSVarcs+fP99qlfXZs2db9cO2+mbzbfjfKuvmMfr4+Kjl2bPK+vr16x2yyrqtMdR8lfWmjrHOHJ/tHVdtHWf+2jmiDan1aQtzw47EqQl5Y88fb4/PITdPyEVEEhMTxdPT0yIh//rrr8XLy0sefPBB+eqrr+Tbb7+VnTt3Wqw8fvnyZenatavo9Xo1Yf3qq69Er9dbJay2AL889qywsFD27NkjgwcPlmuuuUb9FLS+hHzp0qXSo0cP+eKLL+TYsWMyY8YM8fX1bVJC/vTTT8vOnTslJydHsrKyJD4+XkaPHq0eq3zg4OHhIWVlZSJy5QMHvV4vN9xwg0W5V6+yPnfuXOnTp4/s2LFDvvvuO9m9e7ds27ZNRKxXWU9OTpbg4GB1BffGtIaEXMT2syEjIiIc+hzylpTnDK54DnlQUJDTn0Nu3q58Dnn7woTcNibkrVtrew65rX7Y3m22fmyNZQ09h7w5Y19jY2hLxlhnjs/Oeg55a5s/UPO0hblhR+HUVdY3btxo76Ht1nPPPYdt27ZZbBs6dCj27t2LJ598EjExMRARREZGYtasWeoxOp0OMTEx2LVrF2666Sb1PD8/P/Tv3x8+Pj6N1n3fffepZfXo0QM333wzVq1aZbXi5tWWLVuG/Px8xMfHw9/fH7///e+Rn5/fpOt2d3fHsmXLcOrUKXh5eSEmJsbi3vUhQ4YgICAA11xzDXx9r9xzOH78eJhMpkZXdHz99dfxxBNPYNGiRTh37hxCQ0PxxBNP2Dz2pZdegslkwi233II9e/bgmmuuadJ1aOWOO+7A9OnTkZGRgaKiIoSEhCAmJqbJK+E7qzxnWL16NVauXIm0tDTk5eUhMjISixYtqndBvsbUd80ArLZVVVUhMTFRrXfz5s3q+7Kx+PR6fb3tunPnTlRVVcFoNCInJwdRUVFYs2ZNvQsAERG5Qn19k7u7u9qf+fv7Y/369fjuu+/g7++PefPmqYtYFhcXo1u3bjh+/DhOnTpl1R8WFhaqT4rp0aOHek5D/XBD23744QccPHgQIoK+fftiyJAhOHfuXL1jmXn/bx5Lr169mjX2NTaGtmSMdeb4bO+42tj45og2pNanLcwNqX46kf+tqEHUzpSWlsLf3x8lJSXw8/PTOhzqAI4cOYIRI0YgMzMT1113ndbhUAOyCksQv/Y/SH/4Jgzu5e+yerPPZWNW+ixsi9+Ggd0Guqxee2nVLmQf9jFERK1bc/KP9vu8MiIiIiIiIqJWjAk5ERERERERkQaYkBMROUh0dDQyMzMRHR2tdShE1A6xjyEian/sXtSNiIga5u3tzfs6ichp2McQEbU//IaciIiIiIiISANMyImIiIiIiIg0wISciIiIiIiISAO8h5yIiDqcqloTgCvP3Xal/NJyAEBecTkuX3Jt3fbILS7XOgQiIqIOhQk5ERF1OHn/SzyXvn/cpfXqDKXoFHArHtmSB6k749K6m8LHg9MDIiIiV+CIS0REHc7kQT0AAJFBvvDqpHdx7bEurq9pfDwMiOjuo3UYREREHQITciIi6nC6+rjjrtGhWodBREREHRwXdSMiIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0YtA6AiIhIC/lnK1BRXad1GJrz8TAgoruP1mEQERF1SEzIiYiow8k/W4EJz+9xeb06Qyk6BRxE7cXrIXV+Lq+/PrsXj2dSTkREpAEm5ERE1OEo34y/PGs4+gX5uqze/NKTeOLQKrwQNxsRfv1dVm99covLkbztKP9SgIiISCNMyImIqMPqF+SLwb38XVafm+eV5D8yyBcDu7muXiIiImqduKgbERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5EVErUVlZiSNHjqCyslLrUIjIhfhvn4io42JCTkTUSpw4cQIjRozAiRMntA6FiFyI//aJiDouJuREREREREREGuBzyIk6IJPJhIyMDBQVFSEkJAQxMTHQ6/XNPq4ldbQkZgDqtqCgIADA6dOncebMGQQGBqJXr15W9TYUV2N1KNtMJhPS0tKQl5eH0NBQAEB2djb+/ve/o7a2FgEBATh69Ch69OjR7Osloo5ny5Yt2LhxIyIiIjBkyBAUFxdb9Wfm/U9kZCQWLVoEvV7fYD8VHh6OIUOG4Ny5czb746qqKhiNRuTk5CAqKgpr1qyBl5cXAMf35eZqamrsuhZHj08NXW99ddg7xjQUH2A9nrS0LR3x+jRWhq3Xyd3d3WXxOUprioXIghC5WFJSkgCQ1NRUi+07duwQ5S25e/duASAXLlxodj0lJSUCQEpKSloSbruzfft2CQ8PFwDqT3h4uGzfvr1Zx7WkjpbEHBgYKEFBQRbbbP2Y19tQXLb2BQUFSWBgoMU2Pz8/cXNza7ReAOLt7d2k68zMzBQAkpmZ2ax2Ivsd//GihD2eLsd/vOjSer85+40M3jRYvjn7jUvrrY9W7UCW7r33Xrv6FFv9j5ubm/j5+TWpnzLvF6dPn27zmOnTpzu8LzdnNBrFYDBYXYu/v79Tx6eGrrexOhpry4bOtTWetLQtHfH6NFaGrdfJYDCI0Wh0SXyO0ppiofatOfkHE3JyuaSkJPH09JSAgAA5f/68up0JufNt375ddDqdJCQkyIEDB6SsrEwOHDggCQkJotPpLBJXe45rSR0tiTk1NVUdUOfMmSMAJDo6Wt22cOFCmTZtmuh0Ohk5cqTodDoxGo31xgWgwTpSU1OlrKxMrQuADBs2zGpi5uHhYTUxbkpSzoTcdZiQX8GEXHtGo1HtL+68807R6XQSFhambpsyZYpMmzbNol9ZuHChFBUVycKFCy36wqv7qSlTpggAGTp0qHTt2lU9TumPR40aJQDE3d1dli5dKrm5ubJ06VJxd3dXy3BUX27rmoODg2XDhg31XoujxyclGa/vepWk3LwOZSxobIxpKD5b40lL29IRY21jZSjtZf46bdiwQYKDgwVAg0m5o+cCLdGaYqH2jwk5tQlJSUkSHx8v0dHRFp05E3Lnqqurk/DwcElISBCTyWSxz2QySUJCgkREREh1dbVdx9XV1TW7Dlvn2huzsi0+Pl7i4uLEYDBIXFychIWFSXx8vMTHx0tERITU1NSo9SnHxcfHW8VVU1MjXl5e4u3tLTU1NVZ1KOVVVlaKwWCQ4OBgdXLcrVs3dZLVrVs3MRgMUlFRIcHBwaLT6dR9RUVFdl0vE3LXYUJ+BRNybVVXV4vBYFCT5Z49e0p8fLyEhYVJXFycBAcHi8FgkJKSEtHpdKLX6yU2NtairzY/rqysTO2nYmNjLfq92tpa9biqqiqJjY1Vk9Pq6mqLuCorK9X+q7y83GJfc/pyW9ccHBwstbW1ImLZ5wYFBYnBYFBjctT4pFyTreutrq5Wk/KysjK1jpqaGjWuhsYYZZut+GyNJ0p8zW1LR4y1jZURFxenJuPK66Qwfy9d3ZaOis9RWlMs1DE0J//gPeSkCb1ej1WrVmH27Nl45JFH0Lt37xaXWV1djerqavX30tLSFpfZnmRkZODUqVN499134eZmuZ6jm5sbli1bhrFjxyItLc2u4zIyMjB+/Phm1WHrXHtjNt+WmZmJXbt2oV+/fti1axe2bt0KEcHYsWOxb98+tb6EhATU1dVh2rRpVnHt27cPVVVV6v+PHz/eog6lPKPRiLq6OqxcuRLHjx/Hhx9+qJ4XERGBpUuXYv78+XjjjTfw3HPPYf78+ejSpQsuXLiA4cOH4/Tp041e76VaEwAgt7gM7oUljR5PzZdbXA7glzbvqH55z5VrHEnHtHlDGurq6nDnPffjjVefx08//YQnn3wS6enp2Lp1K44dO4b58+cjKSkJIgKTyYTY2Fj861//suirleMSExPVfqq6uhr/+te/1H7Pzc1N7ZvWrVun3jN95513Wt0PfPDgQfX/H3/8cbz22mvq783py82lpaWpMRoMV6ah5n2uci1paWlITk522PhkNBoBACkpKVbX6+7ujuTkZKxevRqJiYlqHfv27cOpU6dgNBrV18TWGPPYY48hPT3dZny2xhMlvua2pSPG2sbKiIyMBAAkJiaqr5PCYDCo7yXldXJ0fI7SmmIhqg8TctLM7bffjuHDh2P58uX485//3OLyUlNTsWLFCgdE1j4VFRUBAAYPHmxzv7I9Ly/PruOU8ppTh61z7Y3ZfFt2djYAqInx4MGDISLqcfHx8QCAS5cuAYDNRXvMY1H+37wOpbycnBwAQHx8PA4fPgwA6gdAq1evxtixYwFcab9ly5YBAEaMGIHPPvsMFy9etOt6f7xw5RnEj249Co89TJBc4ccLVRgZrnUU2vnxwpV/O8nbjmobSAd1/tP9AID3i/zUbUo/NXjwYHXRSKVfNt9v3ldffVx8fDz+9a9/WRyvbFeOu3DhAgBg5MiRVnGZ94tK32euqX25OfMYr66vvmt2xPikXMcDDzxg89x58+Zh9erVFnV88MEHACxfE1tjjK3XxNa1mZ9rT8z1ccRY21gZyrjZt29fm/vN30vOiM9RWlMsRPVhQk6a+uMf/4hbbrkFixcvbnFZy5YtQ0pKivp7aWkp+vTp0+Jy24uQkBAAQFZWFm644Qar/VlZWQCgfire2HFKec2pw9a59sZsvk1JxJXJUFZWljrhCQkJUevz9PQE8EvibqsO8/83r0MpLyoqCp988gnS09PV8jw8PFBZWYklS5Zg6dKlAK60X3p6OgAgMzMTABAQEGDX9fbu4g0AeOWu4Rg4ZLhd51Dz5BaXI3nbUfTuYv0hTUeiXP/Ls4ajX5CvxtF0PJs9j2H1kXTcEVKKN/63TemnsrKycOzYMQBX+pXjx49b7Dfvq68+Lj09Xf3A0LzfU/qmyMhINQH58ssvreIy7xejoqKs9je1LzenxJ2enq4mx+Z9rvm1XF1fS8YnpQ9/8803kZqaarVf+WJAacOsrCy1HPPXxNYYY+s1sTVmmZ9rT8z1ccRY21gZyjj33Xff2Tzf/L3kjPgcpTXFQlQvx/7VPFHjkpKSLFYzjY2NlenTp/MecifjPeS8h5x+wXvIr+A95NriPeS8h5z3kDtXa4qFOgYu6kZtwtUJ+bFjx8TNzU2WLFnChNzJzFca3b9/v5SWlsr+/fsbXMW2oeNaUkdLYl61apU6WZw9e7bVCrjz589vcJX1q+OC2SrrtupYtWqVlJaWqnWBq6y3eUzIr2BCrj3zVdZnzpxptcr6pEmTrFZZX7BggRQWFsqCBQss+sKr+6lJkyapq6x36dJFPc7WKutLliyRkydPypIlS6xWWXdEX27rmoODg2X9+vVSWFgo8+fPt7oWR49P5qus27peW6usK2NBY2NMQ/HZGk9a2paOGGsbK8N8lXXldVq/fn2TV1l39PunqVpTLNT+MSGnNuHqhFxEJDExUTw9Pa0S8i+++EK++uor9efo0aN218OE3DZbz+KMiIiw6zmqto5rSR0tiTkoKMiu55Cb19tQXHwOecfChPwKJuStg6ufQ27eLzb1OeQt6cvN2fscckePT45+Drm98dkaT1ralo54fRorw9HPIXfU+6epWlMs1L41J//QifzvhhYiF5k7dy4uXryInTt3qttOnTqF/v37o6amBiKCPXv2YMKECVbn6vV61NXV2VVPaWkp/P39UVJSAj8/v8ZP6EBMJhMyMjJQVFSEkJAQxMTEQK/XN/u4ltTRkpgBqNuCgoIAAKdPn8aZM2cQGBiIXr16WdXbUFyN1aFsM5lMSEtLQ15enroAUXZ2Nv7+97+jtrYWAQEBOHr0KHr06NGkazxy5AhGjBiBzMxMXHfddc1uK2pcVmEJ4tf+B+kP34TBvfxdVm/2uWzMSp+FbfHbMLDbQJfVWx+t2oEsKf/2U1JSUFNTg4iICAwZMgTFxcVW/Zl5/xMZGYlFixZBr9c32E+Fh4djyJAhOHfunM3+uKqqCkajETk5OYiKisKaNWvUtTkc3Zebq6mpsetaHD0+NXS99dVh7xjTUHyA9XjS0rZ0xOvTWBm2XqerV6p3ZnyO0ppiofarOfkHE3Jqt5iQU1vDhNx1mJBfwYS8deC/fSKi9qE5+Ydb44cQERERERERkaMxISciIiIiIiLSABNyIqJWIjo6GpmZmYiOjtY6FCJyIf7bJyLquAxaB0BERFd4e3vz/lGiDoj/9omIOi5+Q05ERERERESkASbkRERERERERBpgQk5ERERERESkAd5DTkREHU5VrQnAledwu1J+aTkAIK+4HJcvubZuW3KLy7UOgYiIqENjQk5ERB1O3v8S0aXvH3dpvTpDKToF3IpHtuRB6s64tO6G+HhwOkBERKQFjsBERNThTB7UAwAQGeQLr056F9ce6+L6GubjYUBEdx+twyAiIuqQmJATEVGH09XHHXeNDtU6DCIiIurguKgbERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpwKB1AERERFrIP1uBiuo6rcNoE3w8DIjo7qN1GERERO0OE3IiIupw8s9WYMLze1xer85Qik4BB1F78XpInZ/L62+J3YvHMyknIiJyMCbkRETU4SjfjL88azj6Bfm6rN780pN44tAqvBA3GxF+/V1Wb0vkFpcjedtR/jUBERGREzAhJyKiDqtfkC8G9/J3WX1unleS/8ggXwzs5rp6iYiIqHXiom5EREREREREGmBCTkRERERERKQBJuREREREREREGmBCTkRERERERKQBJuRERA5SWVmJI0eOoLKyUutQiKgDY19ERNR2MCEnInKQEydOYMSIEThx4oTWoRBRB8a+iIio7WBCTkRERERERKQBPoecyAVqamqQlpaGvLw8REZGYtGiRXB3d3dJ3SaTCRkZGSgqKkJISAhiYmKg1+udXm95eTkSExPVa968eTN8fX01qdfLy8uqDQA0uC0oKAgAUFxc7NJ2IyJylvrGg6qqKhiNRuTk5CAqKgpr1qyBl5eXXecDV/rNwsJCnDlzBoGBgejRoweAxvtPW2OjXq+vd8xqqP6ioiL4+fnhjTfeQH5+vs3+v6n9ekvGT1vnmkwmzeYCLdFYuztrjDSvt6HXztXzHGfO6bSas7VEW4y51REiO23cuFH8/f1bXM7y5ctl2LBhLS6nMSUlJQJASkpKnF5XQ4xGoxgMBgGg/hgMBjEajU6ve/v27RIeHm5Rd3h4uGzfvt2p9Y4aNcqiTuVn1KhRmtTr7u5u8XtQUJAEBgZabAsMDJSgoCCb59vbbpmZmQJAMjMznXqd1HLHf7woYY+ny/EfL7q03m/OfiODNw2Wb85+49J6W0KrtqLms9UX1Tce1NdvTp8+3aJMW+c31m821H/aGhvd3NzE39/f5rnNrf/q/t/efr0l46etc/38/MTNzU2TuUBL2Nvujp5b2KrX3veFM+c5zpzTaTVna4m2GLOzNSf/YELehiUlJQkAmT9/vtW+RYsWCQBJSkpyWH2VlZXy888/q783N7HuSAm50WgUABIcHCwbNmyQoqIi2bBhgwQHBwsApw7E27dvF51OJwkJCXLgwAEpKyuTAwcOSEJCguh0Oqd1lsrkTqfTSWJionz99deSmJgoOp3OqUm5rXrHjRunDhADBgyQsrIySU1NVbelpqZabZszZ47odDq56aab5KabblKPs6fdmJC3HUzI7ceEvO25ui+qbzzo0aOHmlAsXbpUcnNzZenSpWoSqyTlts437zd1Op1MmzZNFi5caNHn6nQ6m/2nrbHR/Nw5c+ZYjVkA6q2/V69eahy9e/cWADJw4ECr/Uq/Xl9cipaMn7bOnTNnjhrLwoULXToXaInGXndlDHX03MK8XqU+W6+d8pq7ap7jzDmdVnO2lmiLMbsCE/IOJikpSfr06SP+/v5SWVmpbq+qqpKAgAAJDQ11aEJ+NSbkDauurhaDwSDBwcFSW1trsa+2tlaCg4PFYDBIdXW1w+uuq6uT8PBwSUhIEJPJZLHPZDJJQkKCRERESF1dnUPrLSsrUwfIqqoqi31VVVXqpKqsrMzp9SptEBcXp04eLl68KOHh4RIfHy/x8fESEREh1dXV6ra4uDgxGAwSHx8vJpPJoq1qamoabTcm5G0HE3L7MSFve8z7ovrGg8rKSrXfDA8Pt+jXqqur1aS8rKzM6nzz/tXLy0u8vb2lqqrKon9V/v/q/rOystJqbFTKi4+Pl6CgIIuxsaamRq2jpqbG6vipU6da9P8mk0ni4+PFYDDItGnT1HFn2rRpdvXrLRk/bZ1rPheIi4uzONfZc4GWsHUt5u2uvLbKtThqbmFeb01NjUUM5nVUVVVZvS8UzpjnOHNOp9WcrSXaYsyu0pz8g/eQt3HXXXcd8vLy8P7772POnDkAgPfffx+hoaGIiIhQj/voo4+wcuVKZGVlQa/XY8yYMXjllVcQGRkJADh16hQiIiKwfft2rF27FgcPHkRUVBTWrVuHMWPGAAA2bdqE5ORkXLx4EZs2bcKKFSsAADqdDgCwceNGzJ07FwUFBXj44Yfx+eefw83NDVOnTsXatWsRHBxsEfv69euxcuVKnDt3DvHx8diwYQP8/f0BAIcPH8YTTzyBr776CrW1tRg+fDheeuklXHfddfW2RXV1Naqrq9XfS0tLW9q8LZKWloa6ujqsXLkSBoPlPzWDwYDnnnsO8+fPR1paGpKTkx1ad0ZGBk6dOoV3330Xbm6Waze6ublh2bJlGDt2LDIyMjB+/HiH1ZuYmAgAuOeee+Dp6Wmxz9PTE7Nnz8aWLVuQmJiIHTt2OLVe8zYICAjAli1bEBcXp24TEYwdOxZpaWnqtszMTOzatQvTpk1T201pq3379jXabpdqTQCA3OIyuBeWOOz6yPFyi8sB/PKaUf1+eV+XaxwJ2Su3uAzAldeuvvHAaDQCuNJvbt682aJfc3d3R3JyMlavXo3ExESr85UyjUYjdu3aBQBYt26dVf+6ePFipKenW/SfRqPRamw0j/HYsWMWY+O+fftQVVUFANi3bx/Gjx9vcfySJUsAAJMmTVL7/6lTpyI9PR3x8fGora3FZ599hoqKCrv69ZaMn7bONZ8LDBo0yOJcZ88FWsLWtZhvU15j5VocNbcwr2Pfvn1WMSh1rFu3zup9oXDGPMeZczqt5mwt0RZjbs2YkLcD999/PzZu3Kgm5G+99Rbuu+8+7NmzRz2moqICKSkpGDp0KMrLy/HMM8/g9ttvx9GjRy3+IT355JN4/vnnERUVhSeffBJ33303cnNzrTqfWbNmISsrCx999BE+++wzAIC/vz8uX76M6dOnw9fXF3v37kVdXR0efPBBzJo1yyKe3NxcvPfee/jggw9QWlqKefPmYdGiRdiyZQsAoKysDElJSVi7di1EBC+88AJiY2ORk5ODzp0722yH1NRU9UOC1iAvLw8AEB8fb3O/sl05zpGKiooAAIMHD7a5X9muHOcoyrUsXrzY5v6UlBRs2bLF4ddsq17zNlDqLSgoULeJiMW5gwcPRnZ2NgBYLGZk3lbKa1Zfu/144cozfx/dehQee5i8tAU/XqjCyHCto2jdfrxwZdKbvO2otoGQ3apP5wK40ieZLtgeD3JycgAAjz32GDZv3mzVr82bNw+rV6+26CMVyrHmfaX5cUr/quw37z+Ves3HRvP+OjQ01KI887iU/zc//ty5cwCACRMmqMcp9Xp5eWHChAn47LPPcPbsWXV/Q/16S8ZPW+eazwV8fHysznXmXKAlbF2L+TblNTa/FkfMLczr+OCDD6xiUP7fvL1s1efoeY4z53Razdlaoi3G3JoxIW8H7rnnHixbtgzff/89gCufFG7dutUiAZ45c6bFOW+99RYCAwORnZ1t8Y9p8eLFiIuLAwCsWLECgwYNQm5uLqKjoy3O9/Lygq+vLwwGg7qaKgB8+umnOH78OPLz89GnTx8AwNtvv41Bgwbh8OHDGDVqFADg0qVLePvtt9GrVy8AwNq1axEXF4cXXngBPXr0wC233GJR3xtvvIGAgADs3bu33s5w2bJlSElJUX8vLS1VY9CC8tcH6enpeOCBB6z2p6enWxznSCEhIQCArKws3HDDDVb7s7KyLI5zlMjISBw/fhzPP/883n77bav9L774onqcs+s1b4PXXnsNABAaGooffvgBWVlZ6mRCiSUrK0v9tF35r7JdKa+xduvdxRsA8MpdwzFwyHBHXiI5WG5xOZK3HUXvLtYrSZMlpY1enjUc/YKc/6QEarns476Y9ZcrfVKNp+3xICoqCp988gleeOEFANb92p///GcAv/Sv5ucrx5r3leZ9qdK/KvvN+0+lXvOx0by/PnbsmEV55nEp/29+fLdu3QAAu3fvxtKlSy3qraqqwu7duwEA3bt3V8tpqF9vyfhp61zzucCgQYOsznXmXKAlbF2L+TblNTa/FkfMLczrsBWDUod5e9mqz9HzHGfO6bSas7VEW4y5VXP4H86TyyQlJakLrtxxxx3y7LPPyvLly2XmzJkiIjJ9+nT1HvJvv/1W7rrrLomIiJDOnTuLj4+PAJBdu3aJiEh+fr4AkEOHDqnlnz9/XgDI3r17RcR6lXVb94K/8sorEh4ebhVrQECA/OUvf1HPi4iIsNh/8eJFASB79uwREZHTp0/LAw88IP369RM/Pz/x8fERnU4nf/rTn+xuH95DznvIeQ851Yf3kNuP95C3PbyHnPeQtxTvIbfEe8gttcWYXYWLunUw5gl5enq6hIeHS3h4uJpkmyfk/fv3l8mTJ8tnn30m2dnZkpWVJQBkx44dIvJLQv7VV1+p5V+4cEEAyO7du0XEtQn5lClTZOTIkbJr1y7JysqSnJwc6d69u7z00kt2t4/WCbmI5Yqc69evl8LCQlm/fr3LV1nfv3+/lJaWyv79+126yvqcOXMkMzNTXbkcLlplXak3JibGYsXf0tJSWbVqlbpt1apVVttmz56trrJ+4403qsdxlfX2hQm5/ZiQtz0NrbJuPh6Yr7K+ZMkSOXnypCxZsqTBVdaV8837TWWV9QULFqjboqOjRafT2ew/bY2N8+fPt+iHrx6z8L9V1m3Vb77KuvL/AwYMsNp/4403qit1N9Svt2T8tHXu7Nmz1VgWLFjg0rlASzT2uitjqKPnFub1KvXZeu2U19xV8xxnzum0mrO1RFuM2RWYkHcw5gl5XV2d9OzZU3r16qV+GqUk5GfPnhUA8sUXX6jnZmRktDgh/8Mf/iCDBw+2iOmTTz4RvV4vBQUF6rZvvvlGAMjhw4dF5EpCrtfrpbCwUD3mo48+Ejc3NykqKhIREV9fX3n77bfV/QUFBQKgzSXkIq3vOeQRERF8DrmN55AHBQU1+Dxbe9qNCXnbwYTcfkzI2x57n0MeERHRoueQN9ZvNtR/2vsccuXc5tbf0HPIG+rXWzJ+tvfnkNtqd0fPLRp7DnlD7wtnznNc/RxyV8zZWqItxuxsXGW9A9Pr9fi///s/9f/NdenSBd26dcMbb7yBkJAQFBQUqPdZtUR4eDjy8/Nx9OhR9O7dG507d8bEiRMxZMgQzJkzBy+//DLq6uqwaNEijBs3DiNHjlTP9fT0RFJSEp5//nmUlpbikUcewa9//Wv1fvSoqChs3rwZI0eORGlpKYxGo8XiMW3J6tWrsXLlSqSlpSEvLw+RkZFYtGgR3N3dnV73HXfcgenTpyMjIwNFRUUICQlBTEyM1XvE0Q4dOoTy8nIkJiaq17x582b4+jr3/tP66vXy8rJqAwANbgsKCgIAFBcXu6zdiIicpaHxoKqqCkajETk5OYiKisKaNWusxtz6zgeu9JuFhYU4c+YMAgMD1bG8of6zvrFRr9fXO2Y1VH9RURH8/PzwxhtvID8/32b/35R+vSXjZ33nmkwmTeYCLdHY6+6sucXV9Tb02rlynuPMOZ1Wc7aWaIsxt0pO/ICAnMz8G3JbzP9k/dNPP5UBAwaIh4eHDB06VPbs2dPib8gvXbokM2fOlICAAAEgGzduFBGR77//Xm677Tbx8fGRzp07y69+9Ss5ffq0ep7yp+5paWnSs2dP8fT0lDvvvFPOnz+vHnPkyBEZOXKkeHp6SlRUlPztb3+TsLCwNvkNOXUc/Ia87eA35PbjN+RtD/siIiJtNCf/0In8b5lEonamtLQU/v7+KCkpgZ+fn9bhUAdw5MgRjBgxApmZmbjuuuu0DocakFVYgvi1/0H6wzdhcC9/l9WbfS4bs9JnYVv8NgzsNtBl9baEVm1Fzce+iIhIG83JP9waP4SIiIiIiIiIHI0JORGRg0RHRyMzMxPR0dFah0JEHRj7IiKitoOLuhEROYi3tzf/PJSINMe+iIio7eA35EREREREREQaYEJOREREREREpAEm5EREREREREQa4D3kRETU4VTVmgBceaSXK+WXlgMA8orLcfmSa+turtzicq1DICIiareYkBMRUYeT978kc+n7x11ar85Qik4Bt+KRLXmQujMurbulfDw4ZSAiInI0jq5ERNThTB7UAwAQGeQLr056F9ce6+L6Ws7Hw4CI7j5ah0FERNTuMCEnIqIOp6uPO+4aHap1GERERNTBcVE3IiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSABNyIiIiIiIiIg0wISciIiIiIiLSgEHrAIiIiLSQf7YCFdV1WofR6vh4GBDR3UfrMIiIiDoEJuRERNTh5J+twITn97i8Xp2hFJ0CDqL24vWQOj+X12+v3YvHMyknIiJyASbkRETU4SjfjL88azj6Bfm6rN780pN44tAqvBA3GxF+/V1Wr71yi8uRvO0o/3KAiIjIRZiQExFRh9UvyBeDe/m7rD43zyvJf2SQLwZ2c129RERE1DpxUTciIiIiIiIiDTAhJyIiIiIiItIAE3IiIiIiIiIiDTAhJyIiIiIiItIAE3IiIgeprKzEkSNHUFlZqXUoRNSOsa8hImo/mJATETnIiRMnMGLECJw4cULrUIioHWNfQ0TUfjAhJyIiIiIiItIAn0NO5AI1NTVIS0tDXl4eIiMjsWjRIri7u2sWj8lkQkZGBoqKihASEoKYmBjo9Xqr4+yN21Z5AOqto7H67Y3PlvLyciQmJqoxb968GV5eXmp5QUFBAIDi4mKrsktKShAXF4eCggKEhoZi165d8Pf/5VnRSlw//PADDh48CBFBVFSU5q8nEXVMJpMJe/bswcmTJ7F8+XKUlZUhKCgIL7zwAioqKtR+KjQ0FPn5+cjPz0dUVBTWrFkDLy8vtZzTp09j+PDhOH/+PC5fvoygoCCEhYVhwIABKCgowKVLlzB48GBcc801GDJkCIqLi3HmzBkEBgYiKCgIx48fR35+vtU4YT6GREREYMiQITh79qza95aXlyMuLg7ff/89AgICkJycjMjISKs+v6qqCkajEd9++y18fHwwY8YM9OzZ06pevV5v19jRkjHI1rjoqHqbe6w9xzt6HtKScboldQD1zy1cFVdr1ZJrd+a8zJFluKJMTQg1ycaNG8Xf37/R4wDIjh077CqzKcc6WlJSkkyfPt3p9SxfvlyGDRvm0lhKSkoEgJSUlDiszOYwGo1iMBgEgPpjMBjEaDRqEs/27dslPDzcIp7w8HDZvn17s+K2VV5gYKAEBQXZrKOx+u2Nz5ZRo0ZZnKf8uLu729xuXnZkZKTN/ZGRkfXGdXW7ZGZmCgDJzMx00KtFznL8x4sS9ni6HP/xokvr/ebsNzJ402D55uw3Lq3XXlq1CzWN0tf07Nmz3r6tsR9lvPX29m52GQ31h7bGkKuPa6xfFhGZPn26XfW6ubmJv79/o2NHS8YgW9fk5uYmfn5+La63ucfac7yj5yEtGadbUkdDcwtXxdVateTanTkvc0R8rizTEZqTf3TIhDwpKcnixevatatMmTJFvv7660bPrayslJ9//ln9vb5Es6ioSC5dumRXPEDzEvKcnByZO3eu9OrVS9zd3SU8PFzuuusuOXz4sN1ltKaE/OLFi3LhwgWH1dkaEnKj0SgAJDg4WDZs2CBFRUWyYcMGCQ4OFgAuT8q3b98uOp1OEhIS5MCBA1JWViYHDhyQhIQE0el0FoO3PXHbKi81NVX9t5WammpVB4B66zcajXbFZ4uSjOt0OklMTJSvv/5axo0bp8bSq1cvASA33XST3HTTTaLT6SQ1NVUSEhIs+oOpU6fKgQMHZOrUqeq24OBg0el0atIeFBQkS5culUmTJgkAdRJ47733CsCEvC1gQm4bE/K2Yc2aNQJA9Hq9RbJydZKq9LkAxMPDQwDI9ddfr35I6ebm1uA5yo+tDzXNJ8JhYWGi0+lk4cKF6jih9J0LFy4UnU4nw4YNky5duggA8fHxsSjrxhtvlBtuuEH93dvbW3Q6ndqvK8nkhAkTZODAgepxfn5+otPpZMqUKeq2OXPm1Dt2NDYGNjQGmV+TMi4uXLjQIfWaj21NOdae45UPNBw1D2lqfM3RnLlFS+YPbV1LXpOW/Juwt12d8Z5xxfuwuZiQ2ykpKUmmTp0qRUVFUlRUJF999ZXExcVJnz59GjyvpqbGaps9iWZjmpOQHz58WPz8/GTs2LGSnp4uubm58tVXX8mzzz4rN998s93ltKaE3NG0Tsirq6vFYDBIcHCw1NbWWuyrra2V4OBgMRgMUl1d7ZJ46urqJDw8XBISEsRkMlnsM5lMkpCQIBEREVJZWWlX3JWVlVblKXXEx8dLfHy8RERESF1dnYhc+ffj5eUl3t7eVv+WTCaTxMfHi8FgkPj4+AbjU8ozV1ZWpk4kq6qqLGKJi4tTB/Fp06aJyWSyKO/MmTPq/tLSUotyKyoq1H2TJ08WvV5v0S5KOeHh4RIcHKxOjpmQt35MyG1jQt761dXVWX0zfv78eQkPD5fY2FirRNvd3V1iY2MlIiJCgoKCxGAwSFlZmc0k++zZs/Um6pMnT1b/v3v37uqHAEpfr/y3tLTUok81Hydqa2vVcwGIp6enxZhg3ucqH3i6u7tLaGioJCQkSFVVlRgMBgkMDFTjnzZtmhgMBomLi1OvTxlXzfv66urqBsfAhsagqqoq0el0otfr1S9bzMeYq8fzptRrPrbZO04r42BjxyvjX1BQkEPmIU2Nrzls1dHQ3KKl84e2riWvSWPnOqJdnfGeccX7sCWak3902HvIPTw80KNHDwBAjx49sHTpUsTExKj3RJ06dQoRERHYunUr0tLScPDgQaxbtw4AkJycjIsXL2LTpk1YsWIFAECn0wEANm7ciLlz50Kn02HHjh2YMWMGampqkJKSgu3bt+PChQsIDg7GggULsGzZMjWes2fP4vbbb8fHH3+MXr164YUXXsBtt91mM3YRwdy5cxEVFYWMjAy4uf2yNt/w4cPx6KOPqr8fP34cjz76KA4cOABvb2/MnDkTL774Inx9fW2WHR4ejuTkZCQnJ1uUOWPGDDz77LPqta5btw4ffPAB/v3vfyMsLAxvvfUWAgMD8cADD+Dw4cMYNmwYNm/ejMjISIvy169fj5UrV+LcuXOIj4/Hhg0b1Ht0586di4sXL2Lnzp0AgI8++ggrV65EVlYW9Ho9xowZg1deecWqTEV1dTWqq6vV30tLS20e5yppaWmoq6vDypUrYTBY/lMzGAx47rnnMH/+fKSlpVm0t7NkZGTg1KlTePfddy3eMwDg5uaGZcuWYezYsTAajXbFbTQarcozr0NEMHbsWGRkZGD8+PHYt28fqqqqAAD79u3D+PHjLeqfOnUq0tPTMW3atAbjU8ozl5iYCAC455574OnpaRVLdXU1PvvsM1RUVKhlK+VNmDBBLSczM9OibG9vb4wcORJffvkljh8/DpPJZNEu5nGlpKTgxRdfBADkFpfBvbDE7teGXC+3uBwAcKnWpHEkrYvSHkr7UOtzeH8GfvrpJ/X3QYMG4euvv8apU6cwffp0AMDly5fh6+uL8vJyeHp64qmnnrLop958800YDAbU1NRAp9NBRDB16lQsX74cADBhwgR8/vnnAAC9Xg+TyYTc3Fy1Tn9/f5w9exYTJkxAcnIyxo4di8ceewzp6ekWc5tly5ZZjBNubm7quX369MEPP/wA4JcxwdvbG5MnT8Ynn3yCL7/8EgAQExODzz//HNu2bcO6detQV1eHVatWIScnB6tXr0Z5eTnq6uoQGxuL2267zWJcNe+j09LSGhwDGxqD1q1bBxGByWTCgQMHMH78eIsx5tixY82u13xsA2D3sVfHYOv4fv36AQDuvfdeh8xD7J1H2Bqn7WWrjobmFi2dP7R1LXlNGjvXEe3qjPeMK96HrtZhE3Jz5eXl+Otf/4p+/fqhW7duFvuWLl2KF154Addeey08PT3x8ccfq/tmzZqFrKwsfPTRR/jss88AwGIBKMWrr76Kf/7zn3jvvfcQGhqKH374QR2EFCtWrMDq1auxZs0arF27FnPmzMH333+Prl27WpV39OhRfPPNN3jnnXes3ogAEBAQAACoqKjAlClTMGbMGBw+fBjFxcV44IEH8NBDD2HTpk1NbSYLv//97/Hiiy/ixRdfxOOPP47Zs2ejb9++WLZsGUJDQ3H//ffjoYcewocffqiek5ubi/feew8ffPABSktLMW/ePCxatAhbtmyxWUdFRQVSUlIwdOhQlJeX45lnnsHtt9+Oo0eP2rzu1NRU9QOS1iAvLw8AEB8fb3O/sl05ztmKiooAAIMHD7a5X9mek5MDoPG4lePMyzOvQ0Qstin/vfr/FcoCQ+YLDdmKz9a5ShsuXrzYZiwTJkzAZ599hrNnz1qVZz6xtVV2bGwsvvzyS/UDnqvbRSmnb9++6rZHtx6Fxx4mNG3BjxeqMDJc6yhajx8vXPnQLHnbUW0DoXpVZH9h8fsf//hHte9SPvQEgC5duqC8vBy1tbVqP6V8oJ2Xl4fa2loAVyawJpMJy5cvVxPykJAQtZzLly8DAC5cuKBuU55/7uPjo5at9N3K2GD+/+bjhBJjSEiIOhcy73ufeuopfPLJJ2odSiyDBw9W5wvx8fEoLS3F6tWrce7cObX+KVOmqNenUOpWttU3BjY0BpmXd/WYNnjwYISGhja7Xltjm73HNjauK21tPj6Za+o8xN55hK2x1F626mhobgG0bP7Q1rXkNWnsXEe0qzPeM654H7pah03I09PT1W+JKyoqEBISgvT0dKtELzk5GXfccYfNMry8vODr6wuDwaB+225LQUEBoqKicNNNN0Gn0yEsLMzqmLlz5+Luu+8GAKxatQqvvvoqDh06hKlTp1odqwxw0dHRDV7jO++8g0uXLuHtt9+Gj48PAOC1115DQkIC/vjHPyI4OLjB8xty33334de//jUA4PHHH8eYMWPw9NNPq4Pho48+ivvuu8/iHCWWXr16AQDWrl2LuLg4vPDCCzbbb+bMmRa/K9/CZ2dn2/xHuGzZMqSkpKi/l5aWok+fPs2+xpZSJj7p6el44IEHrPanp6dbHOdsyqQmKysLN9xwg9X+rKwsAEBUVBQ++eSTRuNWjjMvz7wOZdBUtplP8Mz/X6FMHMwnlLbis3VuZGQkjh8/jueffx5vv/22VSy7d+8GAHTv3t2qvJ49e+L8+fP1lv2vf/0LAODn54eKigqrdlHK+e6779Rtr9w1HAOHDLd5HdQ65BaXI3nbUfTuYnui0VEp7fHyrOHoF2T7L6lIW4f3C+7/YI36++OPP47XXnsNgOXEWUmgO3XqpPZTSuIVGRmJTp06oba2Vk24V6xYofbr5hNZJWHv0qWLWqa3tzeAK/MnpWyl71bKMP9/83FCidG8DvO+d+XKlWod1dXV6nFZWVkW46oyF1K+SKmqqrI5rirxKdvqGwMbGoPMy7t6TMvKysKxY8eaXa+tsc3eYxsb15W2Nh+fzDV1HmLvPMLWWGovW3U0NLcAWjZ/aOta8po0dq4j2tUZ7xlXvA9dzvF/Od/6JSUlycSJEyUnJ0dycnLk0KFDMnfuXAkKCpJTp06JiEh+fr4AkP/85z8W5169ynp990bD7L7wzMxM6dq1q0RFRcnDDz8sH3/8sdWx7733nsU2Pz8/+ctf/mIz/q1btwoAOXLkSIPX+bvf/U7Gjx9vse3ixYsCQPbu3au2hfk95GFhYfLSSy9ZnDNs2DBZvnx5vfF+9913AkAOHTqkbvv3v/9tcf/E8uXLJSIiwmYse/bssRnLt99+K3fddZdERERI586d1UVgdu3a1eB1K3gPuSXeQ857yOkXvIfcNt5D3vrxHnLeQ857yHkPuYL3kLe+15uLutnJ1kJmdXV14uPjI08++aSI/JKQf/XVVxbHNSchF7ny4mzdulUeeOAB8ff3l5kzZ9Z7rIiIv7+/bNy40Wb8R44cEQDyzjvvNHidzUnIIyIi5MUXX7Q4Z+DAgVYJuXm8ttpq9+7dAkBdNb05CXn//v1l8uTJ8tlnn0l2drZkZWU1aQE8rRNyEcvVytevXy+FhYWyfv36VrHK+v79+6W0tFT279/f4CrrDcVtq7xVq1apE6pVq1ZZ1QGg3vrNV/NsKD5bzFdZnzNnjmRmZkpMTIwai7LK+o033qiusr5q1SqrVdYnT54sX3zxhcXk09Yq60uWLOEq620YE3LbmJC3DbZWWTdPdJUf8xXTlQR21KhRDlllPSwszOL/dTqdzJ8/32qV9fnz54tOp5OhQ4fWu8r6mDFjZPTo0ervDa2yPmDAAPU4ZZV1pS8GILNnz6537GhsDGxoDDK/JmVcXLBggUPqrW+VdXvGwcaON19l3RHzkKbG1xzNmVu0ZP7Q1rXkNWnJv4nmrLLuqNfGFe/D5mJCbidbCbnJZJLOnTtLSkqKiNifkP/hD3+QwYMHW9XRUOL40UcfCQA5d+5cvcc2lJBfvnxZBg4cKCNGjLD6ZEhE1CT4jTfekC5dukh5ebm6b9euXeLm5ianT58WEeu2GD16tEXnXFJSIl5eXg5JyPV6vRQWFlq0g5ubmxQVFVnFonxK/8UXX6jHZ2RktLmEXKRtPIc8IiLCoc8hDwoKsnpWqFJHY/XbG58tzXkOuVI2n0PesTAht40JedvQ3p9Dbt7nt+Q55LbGjpaMQfY+h7w59Tb3WHuOd8VzyO0dp1tSR0NzC1fF1Vq15NqdOS9zRHyuLNMRuMp6E1RXV+P06dMArtxn9dprr6G8vBwJCQlNKic8PBz5+fk4evQoevfujc6dO8PDw8PimBdffBEhISG49tpr4ebmhr/97W/o0aOHuvhaU+l0OmzcuBETJ05ETEwMnnzySURHR6O8vBwffPABPvnkE+zduxdz5szB8uXLkZSUhGeffRZnzpzBww8/jMTExHrvH7/llluwadMmJCQkICAgAM888wz0en2z4ryap6cnkpKS8Pzzz6O0tBSPPPIIfv3rX9u8f7xLly7o1q0b3njjDYSEhKCgoABLly51SByutnr1aqxcuRJpaWnIy8tDZGQkFi1aBHd3d03iueOOOzB9+nRkZGSgqKgIISEhiImJsXqd7Y27vvIA1FtHQ/XbG58thw4dQnl5ORITE9WYN2/eDC8vL7W8oKAgAEBxcbFF2XfccQdKSkoQFxeHgoIChIaGYteuXepCjeZx/fDDDzh48CBEBFFRUWq7HDlypGUvDhFRE+zcuRMVFRU4efIkli9fjrKyMgQFBeGFF15ARUWF2k+FhoYiPz8f+fn5iIqKwpo1a9T7iysqKnD69GkMHz4c58+fx+XLlxEUFISwsDAMGDAABQUFuHTpEgYPHoxrrrkGQ4YMQXFxsfpUmqCgIBw/fhz5+flW44T5GBIREYEhQ4bg7Nmzat9bXl6OuLg4fP/99wgICEBycjIiIyMt+vydO3eiqqoKRqMR3377LXx8fDBjxgz07NnTql69Xt/o2NHYGNPQ/jvuuMPmuOiIept7rD3HO3oe0pJxuqV1APXPLVwRV2vVkmtvyb8JV8TnyjI147SPB1qxpKQki09TOnfuLKNGjZK///3v6jH2fkN+6dIlmTlzpgQEBAgA9Vtt4Jdvct944w0ZPny4+Pj4iJ+fn9x6660W93+bH6to6BtyxcmTJ+Xee++Vnj17iru7u4SFhcndd99tUfaxY8dkwoQJ4unpKV27dpXf/OY3UlZWZtEW5t+Ql5SUyKxZs8TPz0/69OkjmzZtsnkPeXO+IR82bJikpaVJz549xdPTU+688045f/58vbF8+umnMmDAAPHw8JChQ4fKnj17bLZVfVrLN+TUcfAb8raD35Dbxm/I2wb2NURErVNz8g+dyP+WKyRqZ0pLS+Hv74+SkhL4+flpHQ51AEeOHMGIESOQmZmJ6667TutwqAFZhSWIX/sfpD98Ewb38ndZvdnnsjErfRa2xW/DwG4DXVavvbRqF2oa9jVERK1Tc/IP64c5ExEREREREZHTMSEnInKQ6OhoZGZmIjo6WutQiKgdY19DRNR+dNhF3YiIHM3b25t/PkpETse+hoio/eA35EREREREREQaYEJOREREREREpAEm5EREREREREQa4D3kRETU4VTVmgBcecyXK+WXlgMA8orLcfmSa+u2R25xudYhEBERdShMyImIqMPJ+1/iufT94y6tV2coRaeAW/HIljxI3RmX1t0UPh6cHhAREbkCR1wiIupwJg/qAQCIDPKFVye9i2uPdXF9TePjYUBEdx+twyAiIuoQmJATEVGH09XHHXeNDtU6DCIiIurguKgbERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpwKB1AERERFrIP1uBiuo6rcNolXw8DIjo7qN1GERERO0eE3IiIupw8s9WYMLze1xer85Qik4BB1F78XpInZ/L62+K3YvHMyknIiJyMibkRETU4SjfjL88azj6Bfm6rN780pN44tAqvBA3GxF+/V1Wb1PkFpcjedtR/vUAERGRCzAhJyKiDqtfkC8G9/J3WX1unleS/8ggXwzs5rp6iYiIqHXiom5EREREREREGmBCTkRERERERKQBJuREREREREREGmBCTkRERERERKQBJuRERA5SWVmJI0eOoLKyUutQiKgdY19DRNR+MCEnInKQEydOYMSIEThx4oTWoRBRO8a+hoio/WBCTkRERERERKQBPoecyAVMJhMyMjJQVFSEkJAQxMTEQK/XO/1cAKiqqoLRaEROTg6ioqKwZs0aeHl5Ob3umpoapKWlIScnBzqdDtdffz369OnT5PibKj8/HwMHDkR1dTU8PDyQnZ2NiIgIq+NsXRuAFrU1EZErmUwm7NmzB99//z127tyJiooKXHPNNVizZg3c3d3V/iwoKAgAcPr0aZw5cwaBgYHo1auX2seVlJQgLi4OBQUFCA0Nxa5du+Dr64uMjAwUFhaq5/To0cOqHGVbcXFxg/2mrT7XZDIhLS0NeXl5iIyMxKJFi6DX65GRkYEffvgBBw8ehIggKioKixYtgru7u1qerZj9/f3V/coYZF62cn5jY5uyv7F2tXfsaCiWhl7b+spsztjsyjGvpfOW9qw9tk17vCaXE6Kr7N69WwDIhQsXRERk48aN4u/vr2lMzVFSUiIApKSkRNM4tm/fLuHh4QJA/QkPD5ft27c79VwRkenTp1ucq/xMnz7dqXUbjUYxGAw2625K/E3l5uZms043N7dGry0oKEgCAwNbFGtmZqYAkMzMTEdfGjnY8R8vStjj6XL8x4surfebs9/I4E2D5Zuz37i03qbQqm3Ifkpf07NnT5t9HgDx8vKqd595HxccHGxzX319uD1lXt1v2upz/f39rfpsNzc38ff3rzceo9EoIiKRkZE2j4mMjBQR22OQcn5jY5ut/eY/3t7eFr8HBgZKUFBQveU1FEt9GoqxOWOzrXMai7u5Wjpvac/aY9u0x2tqqebkH0zIO7D9+/eLm5ubxMbGWmx3ZUJ+dV2O1BoS8u3bt4tOp5OEhAQ5cOCAlJWVyYEDByQhIUF0Ol2jA2hzzxX5JRl3d3eXpUuXSm5urixdulTc3d0bTcpbUrfRaFQnWwBk0qRJsnTpUnXgj4yMtCv+pjKf2Pn5+cmrr74qfn5+Vkm5rWtLTU1Vj0tNTW1yWyuYkLcdTMjrx4S89VuzZo0AkG7duqn9fGJiokyYMMFiYjxgwAABINHR0eq2hQsXyrRp09TzlO1Tp06VAwcOyLXXXmtRxrRp02ThwoVWiemUKVPU/1fKT01Nteo3bfW5c+bMsYinqKjIqo7AwEBZunSpTJ48WXQ6nTqmmCfsSsxTp061SPQBSHBwsGzYsEGKiopkw4YNFh881De2GY1G0el06rFKu95yyy0WscXExNg1dijjcH2x2ErKGxt/G4rf1ljlzDGvqbF35CStPbZNe7wmR2BCTk0yb948efTRR8XX11cKCwvV7a5KyGtqatp1Ql5XVyfh4eGSkJAgJpPJYp/JZJKEhASJiIiQuro6h54rIlJZWalOJqqrqy32VVdXq5OwyspKh9ZdXV0tBoNBgoODJSwszKKM2tpaCQ4OFoPBIHFxcQ3G31TfffedOrn4+eefLfb9/PPP6r6cnByra1OuNz4+XuLj4y3isqetzTEhbzuYkNePCXnrVldXZ/HNuHk/X1NTI15eXuLp6an289OmTbPq42pqaiyS2LCwMKmrq1P7QyVhByBnzpyR8PBwiYuLEy8vL/H29pbY2Fi1L4+Pj1fLV8pW+s3q6mqrPlcZJ4KCgtRzlONiY2PVeisqKkTEsh/u0qWL1X5FRUWFuq9r165SW1trsf/SpUvi5uYmOp1OqqqqLPaZTCaJj48Xg8Fg8WHF1e3q5eWltmtZWVmDY0dcXJyajF8di/l4aD5GNzT+KjF4e3tLTU2NVfy2xipb5TlyzDPX0nlLe9Ye26Y9XpOjNCf/4D3kHVR5eTm2bduGL7/8EqdPn8amTZvwxBNPNHjOzp07YTQa8cMPP2DcuHF488030adPH3X/P/7xD6xYsQLZ2dno2bMnkpKS8OSTT8JguPI20+l0SEtLw4cffojPP/8cv/rVr/CXv/wFANClSxcAQFJSEjZt2oSPPvoIK1euRFZWFvR6PcaMGYNXXnkFkZGR9cZXXV2N6upq9ffS0tJmt48jZGRk4NSpU3j33Xfh5ma5fqKbmxuWLVuGsWPHIiMjA+PHj3fYuQBgNBoBACkpKVb3qbm7uyM5ORmrV6+G0WjEa6+95rC609LSUFdXh8TERDz//PPYunWrWobBYMBzzz2H+fPnIzIyErt27ao3/qYaOHAgAMDPz0+9V1IRFBSEzp07o6ysDAMHDkRtba3FtZlfr4hYXJs9bW3uUq0JAJBbXAb3wpIWXxc5T25xOYBfXjP6xS/v43KNIyFbDu/PwE8//aT+bt7P79u3D1VVVQCAW265Bf/+979RUVFh1cft27cPhYWFAK70n9nZ2cjIyAAAnDp1CkajER9++CEAYMKECeq2Xbt2AQD69euHf/3rX4iNjcW1116LsWPHYvHixUhPT8e+ffvUfjMtLc1qPFHGiT/84Q8YNGiQxXHTp09Xr+uNN95AcnKyRT/cs2dPXLhwAdHR0fD29rZoF29vb/Tv3x8nT55Ely5d1LmH4sCBA7h8+TIAYN26dUhOTlb3ubm5YerUqUhPT0dFRUWD7XrXXXdh69atSExMbHDsUOYriYmJVrGYj4dpaWlqLA2Nv+Yx7Nu3z2I8qm+sslWeI8c8cy2dt7Rn7bFt2uM1aYkJeQf13nvvITo6Gv3798c999yD5ORkLFu2DDqdzubxlZWV+MMf/oC3334b7u7uWLRoEe666y7s27cPwJV/mPfeey9effVVxMTEIC8vD7/97W8BAMuXL1fLefbZZ/H//t//w8svvwy9Xo/bbrsNM2fOxMmTJ+Hn56cuNlZRUYGUlBQMHToU5eXleOaZZ3D77bfj6NGjVv/wFampqVixYoUjm6lFioqKAACDBw+2uV/ZrhznqHMBICcnBwDwwAMP2Nw/b948rF69Wj3OUXXn5eUBAPr27WuzjPj4eADApUuXGoy/qZQPYlauXGlz//Lly7F48WLU1tZaxWV+vSJiFVdjbW3uxwtXngn86Naj8NjDZKYt+PFCFUaGax1F6/LjhSuT/uRtR7UNhGyqyP7C4nfzft68nwoJCQEAnD17FoB1H3f+/HkAwPTp05GdnW1xrvnCn0ryb75N6cO9vLzUPlLZX1RUpPb1yphg3ucq2+Lj4+Hj42OxTUk4zbeZn688d135EPZqAwcOxMmTJy3KsdU25mVffc1Ke9XXrqNGjcLWrVstrs3W2KG0kTIeXu3qNjI/39b4a162rfHI1lhlqzxHjnm24mvuvKU9a49t0x6vSUtMyDuoP//5z7jnnnsAAFOnTkVJSQn27t1b76dYtbW1eO2113D99dcDAP7yl79gwIABOHToEEaPHo0VK1Zg6dKlSEpKAnBlAPr973+PJUuWWCTks2fPxn333af+np+fD+DKt5gBAQHq9pkzZ1rU/9ZbbyEwMBDZ2dn1/uNftmwZUlJS1N9LS0stvsF3NWUylJWVhRtuuMFqf1ZWlsVxjjoXAKKiovDJJ5/gzTffRGpqqtX+P//5z+pxjqxb+Ubgu+++s1lGeno6AMDT07PB+JvKw8MDly5dwlNPPYWHH37Yar/yQU2nTp1QW1trEZf59SqTE/O4Gmtrc727XPnG5pW7hmPgkOHNvyByutziciRvO4reXex74kBHorTJy7OGo1+Qr8bR0NUO7xfc/8Ea9Xfzft68n1Imwt27dwdg3cd17doVhYWF+Mc//mF1rnlC27NnT5w/f95im9KHV1VVqX2ksj8kJETdpowJ5n2usi09PR2DBg2y2Gae9Jv/RZxSnre3Ny5evIjs7GybbaNst/UkEfPrs/XXdkr8SnvV166HDx9Wyzh+/Hi9Y4fSRsp4eDVlPDSPpaHx17xsW+ORrbHKVnmOHPNsxdfceUt71h7bpj1ek6Yc/Gfz1AacOHFCDAaDxb22Dz74oNxzzz0iYvsecoPBYHWPSEBAgGzatElERLp37y6enp7i4+Oj/nh6elrc5wVA/vrXv1qUUd895N9++63cddddEhERIZ07dxYfHx8BILt27bL7OnkPOe8hF+E95GQb7yGvH+8hb914DznvIec95G1Le2yb9nhNjsJF3cguyirYer1e/XFzcxMvLy+5ePFisxJyT09P+eMf/yg5OTlWP8p5AGTHjh0WZdSXkPfv318mT54sn332mWRnZ0tWVpbN8xuidUIuYrkC5f79+6W0tFT279/f5FXWm3quiOUq60uWLJGTJ0/KkiVLmrzKelPrtrXK+pIlS1y6ynrnzp3l+eefl86dO6vbbK2yrlzbqlWr1ONWrVrV5LZWMCFvO5iQ148Jeetna5X1OXPm2LXK+oIFC2yusj558mT54osvZNiwYRZlTJs2TRYsWGCxTTle+X+l/FWrVjW4yrrS586ePVs9d/78+VJYWCjz58+3KD8wMFCWLFkikyZNqneVdSVm81jMV1lfv369FBYWyvr1661WWbc1ttlaZd1Wu8bExNg1dpivsm4rlsZWWbcVY0PxN7bKuqPHvKbG3lFX3RZpn23THq/JEZiQU6OUT2VfeOEFOX78uMVPZGSkvP766zYTcgBy8OBBtZwTJ05YbBs7dqzcf//9DdZtK6Het2+fAJCzZ8+q286ePSsA5IsvvlC3ZWRktMmEXMT2MxojIiKa/Rxye88VcfxzyO2tu6HnkDcl/qZy9HPImxorE/K2gwl5/ZiQt36Oeg55RESEw59DbqvfbO3PITePuanPIQ8KCrJ6nrd5eY56DrlSZnPG5vrGvIbibq6Wzlvas/bYNu3xmlqqOfmHTuR/N5BQh7Bz507MmjULxcXF8Pf3t9j3+OOP49///jfWrFmDCRMm4MKFCwgICMCmTZvw29/+Ftdeey1effVVGAwGPPTQQwCurFoKAB9//DHi4+Px1FNP4c4774Sbmxu+/vprZGVlqQtt6XQ67NixAzNmzFDrLCwsRJ8+fbBx40bExsbCy8sL3t7eCAoKwrRp07B8+XIUFBRg6dKlOHz4sNX5DSktLYW/vz9KSkrg5+fX8sZrAZPJhIyMDBQVFSEkJAQxMTHQ6/VOPxe4cl+c0WhETk4OoqKisGbNGpv31zm67pqaGqSlpSEnJwc6nQ7XX389+vTp0+T4myo/Px8DBw5EdXU1PDw8kJ2djYiICKvjbF0bgBa19ZEjRzBixAhkZmbiuuuuc9g1keNlFZYgfu1/kP7wTRjcy7/xExwk+1w2ZqXPwrb4bRjYzfbCVFrTqm3Ifkpfc+jQIVRUVOD777/Hzp07UVFRgWuuuQZr1qyBu7u72p8pT584ffo0zpw5g8DAQPTq1Uvt40pKShAXF4eCggKEhoZi165d8PX1RUZGBgoLC9VzevToYVWOsq24uLjBftNWn2symZCWloa8vDxERkZi0aJF0Ov1yMjIwA8//ICDBw9CRBAVFYVFixZZPDXEVszm8xplDDIvWzm/sbFN2d9Yu9o7djQUS30airE5Y7MzxrzmxN7Rtce2aY/X1BLNyj+c9ekAtU7x8fESGxtrc9/BgwcFgLzyyisCWD+HfPv27dK3b1/x8PCQiRMnyvfff29x/kcffSRjx44VLy8v8fPzk9GjR8sbb7yh7kc933A/99xz0qNHD9HpdJKUlCQiIp9++qkMGDBAPDw8ZOjQobJnz556z69Pa/mGnDoOfkPedvAb8vrxG/LWj30NEVHrxOeQU6M++OCDeveNHj1aXXHzkUceUbfPnTsXc+fOBQDccccd9Z4/ZcoUTJkypd79Us8fYzz99NN4+umnLbZNnDjRahXV+s4nIiIiIiJqi2w/0JmIiIiIiIiInIoJORGRg0RHRyMzMxPR0dFah0JE7Rj7GiKi9oN/sk5E5CDe3t5czI2InI59DRFR+8FvyImIiIiIiIg0wISciIiIiIiISANMyImIiIiIiIg0wHvIiYiow6mqNQEAsgpLXFpvfmk5ACCvuByXL7m2bnvlFpdrHQIREVGHwYSciIg6nLz/JZ1L3z/u0np1hlJ0CrgVj2zJg9SdcWndTeXjwSkCERGRs3G0JSKiDmfyoB4AgMggX3h10ru49lgX19d0Ph4GRHT30ToMIiKido8JORERdThdfdxx1+hQrcMgIiKiDo6LuhERERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpgAk5ERERERERkQaYkBMRERERERFpwKB1AETOIiIAgNLSUo0jISIiIiKi9k7JO5Q8xB5MyKndKisrAwD06dNH40iIiIiIiKijKCsrg7+/v13H6qQp6TtRG3L58mX89NNP6Ny5M3Q6ndbhoLS0FH369MEPP/wAPz8/rcOhdobvL3IWvrfImfj+Imfhe4ucqb73l4igrKwMPXv2hJubfXeH8xtyarfc3NzQu3dvrcOw4ufnx4GBnIbvL3IWvrfImfj+Imfhe4ucydb7y95vxhVc1I2IiIiIiIhIA0zIiYiIiIiIiDTAhJzIRTw8PLB8+XJ4eHhoHQq1Q3x/kbPwvUXOxPcXOQvfW+RMjnx/cVE3IiIiIiIiIg3wG3IiIiIiIiIiDTAhJyIiIiIiItIAE3IiIiIiIiIiDTAhJyIiIiIiItIAE3IiIiIiIiIiDTAhJ3KRP/3pTwgPD4enpyeuv/56HDp0SOuQqI179tlnodPpLH6io6O1DovaqC+++AIJCQno2bMndDoddu7cabFfRPDMM88gJCQEXl5emDhxInJycrQJltqcxt5fc+fOterPpk6dqk2w1KakpqZi1KhR6Ny5M4KCgjBjxgycPHnS4phLly7hwQcfRLdu3eDr64uZM2fi559/1ihiaivseW+NHz/equ9asGBBk+phQk7kAtu2bUNKSgqWL1+OI0eOYNiwYZgyZQqKi4u1Do3auEGDBqGoqEj9+c9//qN1SNRGVVRUYNiwYfjTn/5kc//q1avx6quvYt26dTh48CB8fHwwZcoUXLp0ycWRUlvU2PsLAKZOnWrRn7377rsujJDaqr179+LBBx/Ef//7X3z66aeora3F5MmTUVFRoR7zu9/9Dh988AH+9re/Ye/evfjpp59wxx13aBg1tQX2vLcA4De/+Y1F37V69eom1cPnkBO5wPXXX49Ro0bhtddeAwBcvnwZffr0wcMPP4ylS5dqHB21Vc8++yx27tyJo0ePah0KtTM6nQ47duzAjBkzAFz5drxnz5547LHHsHjxYgBASUkJgoODsWnTJtx1110aRkttzdXvL+DKN+QXL160+uacqKnOnDmDoKAg7N27FzfffDNKSkoQGBiId955B3feeScA4MSJExgwYAAOHDiAG264QeOIqa24+r0FXPmGfPjw4Xj55ZebXS6/ISdyspqaGmRmZmLixInqNjc3N0ycOBEHDhzQMDJqD3JyctCzZ0/07dsXc+bMQUFBgdYhUTuUn5+P06dPW/Rj/v7+uP7669mPkcPs2bMHQUFB6N+/PxYuXIhz585pHRK1QSUlJQCArl27AgAyMzNRW1tr0X9FR0cjNDSU/Rc1ydXvLcWWLVvQvXt3DB48GMuWLUNlZWWTyjU4LEIisuns2bMwmUwIDg622B4cHIwTJ05oFBW1B9dffz02bdqE/v37o6ioCCtWrEBMTAyysrLQuXNnrcOjduT06dMAYLMfU/YRtcTUqVNxxx13ICIiAnl5eXjiiScwbdo0HDhwAHq9XuvwqI24fPkykpOTceONN2Lw4MEArvRf7u7uCAgIsDiW/Rc1ha33FgDMnj0bYWFh6NmzJ44dO4bHH38cJ0+exPvvv2932UzIiYjaqGnTpqn/P3ToUFx//fUICwvDe++9h3nz5mkYGRFR05jf9jBkyBAMHToUkZGR2LNnD2699VYNI6O25MEHH0RWVhbXUyGHq++99dvf/lb9/yFDhiAkJAS33nor8vLyEBkZaVfZ/JN1Iifr3r079Hq91WqeP//8M3r06KFRVNQeBQQE4JprrkFubq7WoVA7o/RV7MfIVfr27Yvu3buzPyO7PfTQQ0hPT8fu3bvRu3dvdXuPHj1QU1ODixcvWhzP/ovsVd97y5brr78eAJrUdzEhJ3Iyd3d3jBgxAp9//rm67fLly/j8888xZswYDSOj9qa8vBx5eXkICQnROhRq8GcW2wAAAo5JREFUZyIiItCjRw+Lfqy0tBQHDx5kP0ZO8eOPP+LcuXPsz6hRIoKHHnoIO3bswL///W9ERERY7B8xYgQ6depk0X+dPHkSBQUF7L+oQY29t2xRFtptSt/FP1kncoGUlBQkJSVh5MiRGD16NF5++WVUVFTgvvvu0zo0asMWL16MhIQEhIWF4aeffsLy5cuh1+tx9913ax0atUHl5eUWn+jn5+fj6NGj6Nq1K0JDQ5GcnIyVK1ciKioKERERePrpp9GzZ0+LlbKJ6tPQ+6tr165YsWIFZs6ciR49eiAvLw9LlixBv379MGXKFA2jprbgwQcfxDvvvIN//OMf6Ny5s3pfuL+/P7y8vODv74958+YhJSUFXbt2hZ+fHx5++GGMGTOGK6xTgxp7b+Xl5eGdd95BbGwsunXrhmPHjuF3v/sdbr75ZgwdOtT+ioSIXGLt2rUSGhoq7u7uMnr0aPnvf/+rdUjUxs2aNUtCQkLE3d1devXqJbNmzZLc3Fytw6I2avfu3QLA6icpKUlERC5fvixPP/20BAcHi4eHh9x6661y8uRJbYOmNqOh91dlZaVMnjxZAgMDpVOnThIWFia/+c1v5PTp01qHTW2ArfcVANm4caN6TFVVlSxatEi6dOki3t7ecvvtt0tRUZF2QVOb0Nh7q6CgQG6++Wbp2rWreHh4SL9+/cRoNEpJSUmT6uFzyImIiIiIiIg0wHvIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTAhJyIiIiIiIhIA0zIiYiIiIiIiDTw/wH7XOdUHK7reAAAAABJRU5ErkJggg==",
"text/plain": [
"